
bdi GDB
JTAG debug interface for GNU Debugger

PPC4xx / APM8xxxx

User Manual
Manual Version 1.07 for BDI3000

©1997-2014 by Abatron AG

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 2

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

1 Introduction ... 4
1.1 BDI3000... 4
1.2 BDI Configuration .. 5

2 Installation ... 6
2.1 Connecting the BDI3000 to Target ..6
2.2 Connecting the BDI3000 to Power Supply ..8
2.3 Status LED «MODE»... 9
2.4 Connecting the BDI3000 to Host ...10

2.4.1 Serial line communication ..10
2.4.2 Ethernet communication ..11

2.5 Installation of the Configuration Software..12
2.5.1 Configuration with a Linux / Unix host..13
2.5.2 Configuration with a Windows host ..15
2.5.3 Configuration via Telnet / TFTP ...17

2.6 Testing the BDI3000 to host connection..19
2.7 TFTP server for Windows..19

3 Using bdiGDB.. 20
3.1 Principle of operation... 20
3.2 Configuration File... 21

3.2.1 Part [INIT]... 22
3.2.2 Part [TARGET] ...26
3.2.3 Part [HOST].. 32
3.2.4 Part [FLASH] .. 34
3.2.5 Part [REGS] ... 38

3.3 Debugging with GDB ... 41
3.3.1 Target setup ... 41
3.3.2 Connecting to the target...41
3.3.3 Breakpoint Handling...42
3.3.4 GDB monitor command..42
3.3.5 Target serial I/O via BDI...43
3.3.6 Embedded Linux MMU Support ...44

3.4 Telnet Interface.. 46
3.5 Multi-Core Support... 49
3.6 Low level JTAG mode.. 54

4 Specifications.. 55

5 Environmental notice.. 56

6 Declaration of Conformity (CE)..56

7 Warranty and Support Terms...57
7.1 Hardware ... 57
7.2 Software .. 57
7.3 Warranty and Disclaimer ...57
7.4 Limitation of Liability .. 57

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 3

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

Appendices

A Troubleshooting ... 58

B Maintenance.. 59

C Trademarks ... 59

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 4

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

1 Introduction
bdiGDB enhances the GNU debugger (GDB), with JTAG debugging for PowerPC 4xx based targets.
With the built-in Ethernet interface you get a very fast code download speed. No target communica-
tion channel (e.g. serial line) is wasted for debugging purposes. Even better, you can use fast Ether-
net debugging with target systems without network capability. The host to BDI communication uses
the standard GDB remote protocol.

An additional Telnet interface is available for special debug tasks (e.g. force a hardware reset,
program flash memory).

The following figure shows how the BDI3000 interface is connected between the host and the target:

1.1 BDI3000

The BDI3000 is the main part of the bdiGDB system. This small box implements the interface be-
tween the JTAG pins of the target CPU and a 10/100Base-T Ethernet connector. The firmware of the
BDI3000 can be updated by the user with a simple Linux/Windows configuration program or interac-
tively via Telnet/TFTP. The BDI3000 supports 1.2 – 5.0 Volts target systems.

GNU Debugger
(GDB)

BDI3000

Target System

Ethernet (10/100 BASE-T)

PPC
 4xx

UNIX / PC Host

JTAG Interface

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 5

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

1.2 BDI Configuration

As an initial setup, the IP address of the BDI3000, the IP address of the host with the configuration
file and the name of the configuration file is stored within the flash of the BDI3000.
Every time the BDI3000 is powered on, it reads the configuration file via TFTP.

Following an example of a typical configuration file:

;bdiGDB configuration file for IBM 405GP Reference Board
; --
;
[INIT]
; init core register
WSPR 954 0x00000000;DCWR: Disable data cache write-thru
WSPR 1018 0x00000000;DCCR: Disable data cache
WSPR 1019 0x00000000;ICCR: Disable instruction cache
WSPR 982 0x00000000;EVPR: Exception Vector Table @0x00000000
; Setup Peripheral Bus
WDCR 18 0x00000010;Select PB0AP
WDCR 19 0x9B015480;PB0AP: Flash and SRAM
WDCR 18 0x00000000;Select PB0CR
WDCR 19 0xFFF18000;PB0CR: 1MB at 0xFFF00000, r/w, 8bit
; Setup SDRAM Controller
WDCR 16 0x00000080;Select SDTR1
WDCR 17 0x0086400D;SDTR1: SDRAM Timing Register
WDCR 16 0x00000040;Select MB0CF
WDCR 17 0x00046001;MB0CF: 16MB @ 0x00000000
WDCR 16 0x00000048;Select MB2CF
WDCR 17 0x01046001;MB2CF: 16MB @ 0x01000000
WDCR 16 0x00000030;Select RTR
WDCR 17 0x05F00000;RTR: Refresh Timing Register
WDCR 16 0x00000020;Select MCOPT1
WDCR 17 0x80800000;MCOPT1: Enable SDRAM Controller

[TARGET]
JTAGCLOCK 0 ;use 32 MHz JTAG clock
CPUTYPE 405 ;the used target CPU type
BDIMODE AGENT ;the BDI working mode (LOADONLY | AGENT)
BREAKMODE SOFT ;SOFT or HARD, HARD uses PPC hardware breakpoint
VECTOR CATCH ;catch unhandled exceptions

[HOST]
IP 151.120.25.115
FILE E:\cygnus\root\usr\demo\evb405\vxworks
FORMAT ELF
LOAD MANUAL ;load code MANUAL or AUTO after reset
DEBUGPORT 2001

[FLASH]
WORKSPACE 0x00004000 ;workspace in target RAM for fast programming algorithm
CHIPTYPE AM29F ;Flash type (AM29F | AM29BX8 | AM29BX16 | I28BX8 | I28BX16)
CHIPSIZE 0x80000 ;The size of one flash chip in bytes (e.g. AM29F040 = 0x80000)
BUSWIDTH 8 ;The width of the flash memory bus in bits (8 | 16 | 32)
FILE E:\cygnus\root\usr\demo\evb405\evb405gp.hex ;The file to program
ERASE 0xFFF80000 ;erase sector 0 of flash in U7 (AM29F040)
ERASE 0xFFF90000 ;erase sector 1 of flash

Based on the information in the configuration file, the target is automatically initialized after every
reset.

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 6

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

2 Installation
2.1 Connecting the BDI3000 to Target

The cable to the target system is a 16 pin flat ribbon cable. In case where the target system has an
appropriate connector, the cable can be directly connected. The pin assignment is in accordance with
the PowerPC 4xx JTAG connector specification.

In order to ensure reliable operation of the BDI (EMC, runtimes, etc.) the target cable length must not
exceed 20 cm (8").

For BDI TARGET B connector signals see table on next page.

Warning:
Before you can use the BDI3000 with an other target processor type (e.g. PPC <--> ARM), a new
setup has to be done (see chapter 2.5). During this process the target cable must be disconnected
from the target system.

To avoid data line conflicts, the BDI3000 must be disconnected from the target system while
programming a new firmware for an other target CPU.

!

JTAG Connector

BDI3000

Target System

PPC 1 15

 16 2

The green LED «TRGT» marked light up when target is powered up

 1 - TDO
 2 - NC (WARMRST)
 3 - TDI
 4 - TRST
 5 - NC
 6 - Vcc Target
 7 - TCK
 8 - NC
 9 - TMS
10 - NC
11 - HALT
12 - NC (GROUND)
13 - RESET
14 - NC (key)
15 - NC
16 - GROUND

 TARGET A TARGET B

15 1

16 2

BD
I

TR
G

T

M
O

D
E

4xx

!

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 7

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

BDI TARGET B Connector Signals:

Pin Name Description

1 TDO JTAG Test Data Out
This input to the BDI3000 connects to the target TDO pin.

2 <reserved>

3 TDI JTAG Test Data In
This output of the BDI3000 connects to the target TDI pin.

4 TRST JTAG Test Reset
This output of the BDI3000 resets the JTAG TAP controller on the target.

5 <reserved>

6 Vcc Target 1.2 – 5.0V:
This is the target reference voltage. It indicates that the target has power and it is also used
to create the logic-level reference for the input comparators. It also controls the output logic
levels to the target. It is normally fed from Vdd I/O on the target board.

7 TCK JTAG Test Clock
This output of the BDI3000 connects to the target TCK pin.

8 <reserved>

9 TMS JTAG Test Mode Select
This output of the BDI3000 connects to the target TMS line.

10 <reserved>

11 HALT Processor Halt
This output of the BDI3000 connects to the target HALT line.

12 GROUND System Ground

13 RESET System Reset (optional)
This open collector output of the BDI3000 is used to hard reset the target system. This is
an optional signal and only driven if RESET HARD is selected in the BDI configuration. The
standard IBM debug connected specification does not include this signal.

14 <reserved>

15 <reserved>

16 GROUND System Ground

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 8

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

2.2 Connecting the BDI3000 to Power Supply

The BDI3000 needs to be supplied with the enclosed power supply from Abatron (5VDC).

Before use, check if the mains voltage is in accordance with the input voltage printed on power
supply. Make sure that, while operating, the power supply is not covered up and not situated near
a heater or in direct sun light. Dry location use only.

For error-free operation, the power supply to the BDI3000 must be between 4.75V and 5.25V DC.
The maximal tolerable supply voltage is 5.25 VDC. Any higher voltage or a wrong polarity
might destroy the electronics.

Please switch on the system in the following sequence:

• 1 –> external power supply

• 2 –> target system

!

!

RS232 POWER

+5 VDC GND

 TARGET A TARGET B

 BD
I

TR
G

T

M
O

D
E

The green LED «BDI» marked light up when 5V power is connected to the BDI3000

casing connected to ground terminal

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 9

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

2.3 Status LED «MODE»

The built in LED indicates the following BDI states:

MODE LED BDI STATES

OFF The BDI is ready for use, the firmware is already loaded.

ON The output voltage from the power supply is too low.

BLINK The BDI «loader mode» is active (an invalid firmware is loaded or loading firmware is active).

 TARGET A TARGET B

 BD
I

TR
G

T

M
O

D
E

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 10

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

2.4 Connecting the BDI3000 to Host

2.4.1 Serial line communication

Serial line communication is only used for the initial configuration of the bdiGDB system.

The host is connected to the BDI through the serial interface (COM1...COM4). The communication
cable (included) between BDI and Host is a serial cable. There is the same connector pinout for the
BDI and for the Host side (Refer to Figure below).

RS232 Connector
(for PC host)

BDI3000

Target System

RS232

PC Host

1 - NC
2 - RXD data from host
3 - TXD data to host
4 - NC
5 - GROUND
6 - NC
7 - NC
8 - NC
9 - NC

PPC

RS232 POWER

54321

9876

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 11

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

2.4.2 Ethernet communication

The BDI3000 has a built-in 10/100 BASE-T Ethernet interface (see figure below). Connect an UTP
(Unshielded Twisted Pair) cable to the BD3000. Contact your network administrator if you have ques-
tions about the network.

The following explains the meanings of the built-in LED lights:

LED Function Description

LED 1
(green)

Link / Activity When this LED light is ON, data link is successful between the UTP port
of the BDI3000 and the hub to which it is connected.
The LED blinks when the BDI3000 is receiving or transmitting data.

LED 2
(amber)

Speed When this LED light is ON, 100Mb/s mode is selected (default).

When this LED light is OFF, 10Mb/s mode is selected

10/100 BASE-T

PC / Unix
Host

Target System

Ethernet (10/100 BASE-T)

 1 - TD+
 2 - TD-
 3 - RD+
 4 - NC
 5 - NC
 6 - RD-
 7 - NC
 8 - NC

Connector

BDI3000

PPC

RS232 POWER

1 8

LED1 LED2

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 12

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

2.5 Installation of the Configuration Software

On the enclosed diskette you will find the BDI configuration software and the firmware required for
the BDI3000. For Windows users there is also a TFTP server included.

The following files are on the diskette.

b30pp4gd.exe Windows Configuration program

b30pp4gd.xxx Firmware for the BDI3000

tftpsrv.exe TFTP server for Windows (WIN32 console application)

*.cfg Configuration files

*.def Register definition files

bdisetup.zip ZIP Archive with the Setup Tool sources for Linux / UNIX hosts.

Overview of an installation / configuration process:

• Create a new directory on your hard disk

• Copy the entire contents of the enclosed diskette into this directory

• Linux only: extract the setup tool sources and build the setup tool

• Use the setup tool or Telnet (default IP) to load/update the BDI firmware
Note: A new BDI has no firmware loaded.

• Use the setup tool or Telnet (default IP) to load the initial configuration parameters
- IP address of the BDI.
- IP address of the host with the configuration file.
- Name of the configuration file. This file is accessed via TFTP.
- Optional network parameters (subnet mask, default gateway).

Activating BOOTP:
The BDI can get the network configuration and the name of the configuration file also via BOOTP.
For this simple enter 0.0.0.0 as the BDI’s IP address (see following chapters). If present, the subnet
mask and the default gateway (router) is taken from the BOOTP vendor-specific field as defined in
RFC 1533.

With the Linux setup tool, simply use the default parameters for the -c option:
[root@LINUX_1 bdisetup]# ./bdisetup -c -p/dev/ttyS0 -b57

The MAC address is derived from the serial number as follows:
MAC: 00-0C-01-xx-xx-xx , replace the xx-xx-xx with the 6 left digits of the serial number
Example: SN# 33123407 ==>> 00-0C-01-33-12-34

Default IP: 192.168.53.72
Before the BDI is configured the first time, it has a default IP of 192.168.53.72 that allows an initial
configuration via Ethernet (Telnet or Setup Tools). If your host is not able to connect to this default
IP, then the initial configuration has to be done via the serial connection.

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 13

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

2.5.1 Configuration with a Linux / Unix host

The firmware update and the initial configuration of the BDI3000 is done with a command line utility.
In the ZIP Archive bdisetup.zip are all sources to build this utility. More information about this utility
can be found at the top in the bdisetup.c source file. There is also a make file included.
Starting the tool without any parameter displays information about the syntax and parameters.

To avoid data line conflicts, the BDI3000 must be disconnected from the target system while
programming the firmware for an other target CPU family.

Following the steps to bring-up a new BDI3000:

1. Build the setup tool:
The setup tool is delivered only as source files. This allows to build the tool on any Linux / Unix host.
To build the tool, simply start the make utility.

[root@LINUX_1 bdisetup]# make
cc -O2 -c -o bdisetup.o bdisetup.c
cc -O2 -c -o bdicnf.o bdicnf.c
cc -O2 -c -o bdidll.o bdidll.c
cc -s bdisetup.o bdicnf.o bdidll.o -o bdisetup

2. Check the serial connection to the BDI:
With "bdisetup -v" you may check the serial connection to the BDI. The BDI will respond with infor-
mation about the current loaded firmware and network configuration.
Note: Login as root, otherwise you probably have no access to the serial port.

$./bdisetup -v -p/dev/ttyS0 -b115
BDI Type : BDI3000 (SN: 30000154)
Loader : V1.00
Firmware : unknown
MAC : ff-ff-ff-ff-ff-ff
IP Addr : 255.255.255.255
Subnet : 255.255.255.255
Gateway : 255.255.255.255
Host IP : 255.255.255.255
Config : ÿÿÿÿÿÿÿ........

3. Load/Update the BDI firmware:
With "bdisetup -u" the firmware is programmed into the BDI3000 flash memory. This configures the
BDI for the target you are using. Based on the parameters -a and -t, the tool selects the correct firm-
ware file. If the firmware file is in the same directory as the setup tool, there is no need to enter a -d
parameter.

$./bdisetup -u -p/dev/ttyS0 -b115 -aGDB -tPPC400
Connecting to BDI loader
Programming firmware with ./b30pp4gd.100
Erasing firmware flash
Erasing firmware flash passed
Programming firmware flash
Programming firmware flash passed

!

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 14

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

4. Transmit the initial configuration parameters:
With "bdisetup -c" the configuration parameters are written to the flash memory within the BDI.
The following parameters are used to configure the BDI:

BDI IP Address The IP address for the BDI3000. Ask your network administrator for as-
signing an IP address to this BDI3000. Every BDI3000 in your network
needs a different IP address.

Subnet Mask The subnet mask of the network where the BDI is connected to. A subnet
mask of 255.255.255.255 disables the gateway feature. Ask your network
administrator for the correct subnet mask. If the BDI and the host are in
the same subnet, it is not necessary to enter a subnet mask.

Default Gateway Enter the IP address of the default gateway. Ask your network administra-
tor for the correct gateway IP address. If the gateway feature is disabled,
you may enter 255.255.255.255 or any other value.

Config - Host IP Address Enter the IP address of the host with the configuration file. The configura-
tion file is automatically read by the BDI after every start-up via TFTP.
If the host IP is 255.255.255.255 then the setup tool stores the configura-
tion read from the file into the BDI internal flash memory. In this case no
TFTP server is necessary.

Configuration file Enter the full path and name of the configuration file. This file is read by
the setup tool or via TFTP. Keep in mind that TFTP has it’s own root direc-
tory (usual /tftpboot).

$./bdisetup -c -p/dev/ttyS0 -b115 \
> -i151.120.25.102 \
> -h151.120.25.112 \
> -fe:/bdi3000/mytarget.cfg
Connecting to BDI loader
Writing network configuration
Configuration passed

5. Check configuration and exit loader mode:
The BDI is in loader mode when there is no valid firmware loaded or you connect to it with the setup
tool. While in loader mode, the Mode LED is blinking. The BDI will not respond to network requests
while in loader mode. To exit loader mode, the "bdisetup -v -s" can be used. You may also power-off
the BDI, wait some time (1min.) and power-on it again to exit loader mode.

$./bdisetup -v -p/dev/ttyS0 -b115 -s
BDI Type : BDI3000 (SN: 30000154)
Loader : V1.00
Firmware : V1.00 bdiGDB for PPC400
MAC : 00-0c-01-30-00-01
IP Addr : 151.120.25.102
Subnet : 255.255.255.255
Gateway : 255.255.255.255
Host IP : 151.120.25.112
Config : /bdi3000/mytarget.cfg

The Mode LED should go off, and you can try to connect to the BDI via Telnet.

$ telnet 151.120.25.102

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 15

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

2.5.2 Configuration with a Windows host

First make sure that the BDI is properly connected (see Chapter 2.1 to 2.4).

To avoid data line conflicts, the BDI3000 must be disconnected from the target system while
programming the firmware for an other target CPU family.

dialog box «BDI3000 Update/Setup»

Before you can use the BDI3000 together with the GNU debugger, you must store the initial config-
uration parameters in the BDI3000 flash memory. The following options allow you to do this:

Port Select the communication port where the BDI3000 is connected during
this setup session. If you select Network, make sure the Loader is already
active (Mode LED blinking). If there is already a firmware loaded and run-
ning, use the Telnet command "boot loader" to activate Loader Mode.

Speed Select the baudrate used to communicate with the BDI3000 loader during
this setup session.

Connect Click on this button to establish a connection with the BDI3000 loader.
Once connected, the BDI3000 remains in loader mode until it is restarted
or this dialog box is closed.

Current Press this button to read back the current loaded BDI3000 firmware ver-
sion. The current firmware version will be displayed.

!

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 16

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

Erase Press this button to erase the current loaded firmware.

Update This button is only active if there is a newer firmware version present in the
execution directory of the bdiGDB setup software. Press this button to
write the new firmware into the BDI3000 flash memory.

BDI IP Address Enter the IP address for the BDI3000. Use the following format:
xxx.xxx.xxx.xxx e.g.151.120.25.101
Ask your network administrator for assigning an IP address to this
BDI3000. Every BDI3000 in your network needs a different IP address.

Subnet Mask Enter the subnet mask of the network where the BDI is connected to.
Use the following format: xxx.xxx.xxx.xxxe.g.255.255.255.0
A subnet mask of 255.255.255.255 disables the gateway feature.
Ask your network administrator for the correct subnet mask.

Default Gateway Enter the IP address of the default gateway. Ask your network administra-
tor for the correct gateway IP address. If the gateway feature is disabled,
you may enter 255.255.255.255 or any other value.

Config - Host IP Address Enter the IP address of the host with the configuration file. The configura-
tion file is automatically read by the BDI after every start-up via TFTP.
If the host IP is 255.255.255.255 then the setup tool stores the configura-
tion read from the file into the BDI internal flash memory. In this case no
TFTP server is necessary.

Configuration file Enter the full path and name of the configuration file. This file is read by
the setup tool or via TFTP.

Transmit Click on this button to store the configuration in the BDI3000 flash
memory.

Note:
Using this setup tool via the Network channel is only possible if the BDI3000 is already in Loader
mode (Mode LED blinking). To force Loader mode, enter "boot loader" at the Telnet. The setup tool
tries first to establish a connection to the Loader via the IP address present in the "BDI IP Address"
entry field. If there is no connection established after a time-out, it tries to connect to the default IP
(192.168.53.72).

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 17

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

2.5.3 Configuration via Telnet / TFTP

The firmware update and the initial configuration of the BDI3000 can also be done interactively via a
Telnet connection and a running TFTP server on the host with the firmware file. In cases where it is
not possible to connect to the default IP, the initial setup has to be done via a serial connection.

To avoid data line conflicts, the BDI3000 must be disconnected from the target system while
programming the firmware for an other target CPU family.

Following the steps to bring-up a new BDI3000 or updating the firmware.
Connect to the BDI Loader via Telnet.
If a firmware is already running enter "boot loader" and reconnect via Telnet.

$ telnet 192.168.53.72
or
$ telnet <your BDI IP address>

Update the network parameters so it matches your needs:

LDR>network
 BDI MAC : 00-0c-01-30-00-01
 BDI IP : 192.168.53.72
 BDI Subnet : 255.255.255.0
 BDI Gateway : 255.255.255.255
 Config IP : 255.255.255.255
 Config File :

LDR>netip 151.120.25.102
LDR>nethost 151.120.25.112
LDR>netfile /bdi3000/mytarget.cfg

LDR>network
 BDI MAC : 00-0c-01-30-00-01
 BDI IP : 151.120.25.102
 BDI Subnet : 255.255.255.0
 BDI Gateway : 255.255.255.255
 Config IP : 151.120.25.112
 Config File : /bdi3000/mytarget.cfg

LDR>network save
saving network configuration ... passed
 BDI MAC : 00-0c-01-30-00-01
 BDI IP : 151.120.25.102
 BDI Subnet : 255.255.255.0
 BDI Gateway : 255.255.255.255
 Config IP : 151.120.25.112
 Config File : /bdi3000/mytarget.cfg

In case the subnet has changed, reboot before trying to load the firmware

LDR>boot loader

!

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 18

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

Connect again via Telnet and program the firmware into the BDI flash:

$ telnet 151.120.25.102

LDR>info
 BDI Firmware: not loaded
 BDI CPLD ID : 01285043
 BDI CPLD UES: ffffffff
 BDI MAC : 00-0c-01-30-00-01
 BDI IP : 151.120.25.102
 BDI Subnet : 255.255.255.0
 BDI Gateway : 255.255.255.255
 Config IP : 151.120.25.112
 Config File : /bdi3000/mytarget.cfg

LDR>fwload e:/temp/b30pp4gd.100
erasing firmware flash ... passed
programming firmware flash ... passed

LDR>info
 BDI Firmware: 22 / 1.00
 BDI CPLD ID : 01285043
 BDI CPLD UES: ffffffff
 BDI MAC : 00-0c-01-30-00-01
 BDI IP : 151.120.25.102
 BDI Subnet : 255.255.255.0
 BDI Gateway : 255.255.255.255
 Config IP : 151.120.25.112
 Config File : /bdi3000/mytarget.cfg
LDR>

To boot now into the firmware use:

LDR>boot

The Mode LED should go off, and you can try to connect to the BDI again via Telnet.

telnet 151.120.25.102

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 19

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

2.6 Testing the BDI3000 to host connection

After the initial setup is done, you can test the communication between the host and the BDI3000.
There is no need for a target configuration file and no TFTP server is needed on the host.

• If not already done, connect the BDI3000 system to the network.

• Power-up the BDI3000.

• Start a Telnet client on the host and connect to the BDI3000 (the IP address you entered dur-
ing initial configuration).

• If everything is okay, a sign on message like «BDI Debugger for Embedded PowerPC» and
a list of the available commands should be displayed in the Telnet window.

2.7 TFTP server for Windows

The bdiGDB system uses TFTP to access the configuration file and to load the application program.
Because there is no TFTP server bundled with Windows, Abatron provides a TFTP server application
tftpsrv.exe. This WIN32 console application runs as normal user application (not as a system ser-
vice).

Command line syntax: tftpsrv [p] [w] [dRootDirectory]

Without any parameter, the server starts in read-only mode. This means, only read access request
from the client are granted. This is the normal working mode. The bdiGDB system needs only read
access to the configuration and program files.

The parameter [p] enables protocol output to the console window. Try it.
The parameter [w] enables write accesses to the host file system.
The parameter [d] allows to define a root directory.

tftpsrv p Starts the TFTP server and enables protocol output

tftpsrv p w Starts the TFTP server, enables protocol output and write accesses are
allowed.

tftpsrv dC:\tftp\ Starts the TFTP server and allows only access to files in C:\tftp and its
subdirectories. As file name, use relative names.
For example "bdi\mpc750.cfg" accesses "C:\tftp\bdi\mpc750.cfg"

You may enter the TFTP server into the Startup group so the server is started every time you login.

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 20

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

3 Using bdiGDB
3.1 Principle of operation

The firmware within the BDI handles the GDB request and accesses the target memory or registers
via the JTAG interface. There is no need for any debug software on the target system. After loading
the code via TFTP, debugging can begin at the very first assembler statement.

Whenever the BDI system is powered-up the following sequence starts:

Power On

initial
configuration

valid?

Get configuration file
via TFTP

Reset System and

Power OFF

activate BDI3000 loader

Power OFF

no

yes

Process target init list

Process GDB requests
Process Telnet commands

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 21

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

Breakpoints:
There are two breakpoint modes supported. One of them (SOFT) is implemented by replacing appli-
cation code with a TRAP instruction. The other (HARD) uses the built in breakpoint logic. If HARD is
used, only 4 (2 for 401/403) breakpoints can be active at the same time.
The following example selects SOFT as the breakpoint mode:

BREAKMODE SOFT ;SOFT or HARD, HARD uses PPC hardware breakpoints

All the time the application is suspended (i.e. caused by a breakpoint) the target processor remains
freezed.

3.2 Configuration File

The configuration file is automatically read by the BDI after every power on.
The syntax of this file is as follows:

; comment
[part name]
identifier parameter1 parameter2 parameterN ; comment
identifier parameter1 parameter2 parameterN
.....
[part name]
identifier parameter1 parameter2 parameterN
identifier parameter1 parameter2 parameterN
.....

etc.

Numeric parameters can be entered as decimal (e.g. 700) or as hexadecimal (0x80000).

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 22

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

3.2.1 Part [INIT]

The part [INIT] defines a list of commands which should be executed every time the target comes out
of reset. The commands are used to get the target ready for loading the program file.

WGPR register value Write value to the selected general purpose register.
register the register number 0 .. 31
value the value to write into the register
Example: WGPR 0 5

WSPR register value Write value to the selected special purpose register.
register the register number
value the value to write into the register
Example: WSPR 27 0x00001002 ; SRR1 : ME,RI

WDCR register value Write value to the selected device control register. Some special register
numbers are use to access the PPC476 Multi-core debug registers.

register the register number
value the value to write into the register
Example: WDCR 0x12 0x00000010 ; Select EBC0_B0AP

WREG name value Write value to the selected register/memory by name
name the case sensitive register name from the reg def file
value the value to write to the register/memory
Example: WREG msr 0x00001002

WM8 address value Write a byte (8bit) to the selected memory place.
address the memory address
value the value to write to the target memory
Example: WM8 0xFFFFFA21 0x04 ; SYPCR: watchdog disable ...

WM16 address value Write a half word (16bit) to the selected memory place.
address the memory address
value the value to write to the target memory
Example: WM16 0x02200200 0x0002 ; TBSCR

WM32 address value Write a word (32bit) to the selected memory place.
address the memory address
value the value to write to the target memory
Example: WM32 0x02200000 0x01632440 ; SIUMCR

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 23

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

RM8 address value Read a byte (8bit) from the selected memory place.
address the memory address
Example: RM8 0x00000000

RM16 address value Read a half word (16bit) from the selected memory place.
address the memory address
Example: RM16 0x00000000

RM32 address value Read a word (32bit) from the selected memory place.
address the memory address
Example: RM32 0x00000000

SIDCR cfgaddr cfgdata Sets the DCR addresses of the Configuration Address and Data Register
used for Indirectly accessed Device Control Registers.

cfgaddr the address of the Configuration Address Register
cfgdata the address of the Configuration Data Register
Example: SIDCR 0x10 0x11 ; set SDRAM configuration

SIDCR 0x12 0x13 ; set EBC configuration

WIDCR offset data Write to an Indirectly accessed Device Control Register using the Config-
uration Address and Data Registers define with the last SIDCR entry.

offset offset of the register, will be written to cfgaddr
data value for the register, will be written to cfgdata
Example: SIDCR 0x10 0x11 ; set SDRAM Config

WIDCR 0x0040 0x00007201 ; SDRAM_MB0CF
WIDCR 0x0044 0x08007201 ; SDRAM_MB1CF
WIDCR 0x0048 0x00000000 ; SDRAM_MB2CF

DELAY value Delay for the selected time. A delay may be necessary to let the clock PLL
lock again after a new clock rate is selected.

value the delay time in milliseconds (1...30000)
Example: DELAY 500 ; delay for 0.5 seconds

MMAP start end Because a memory access to an invalid memory space via JTAG leads to
a deadlock, this entry can be used to define up to 32 valid memory ranges.
If at least one memory range is defined, the BDI checks against this
range(s) and avoids accessing of not mapped memory ranges.

start the start address of a valid memory range
end the end address of this memory range
Example: MMAP 0xFFE00000 0xFFFFFFFF ;Boot ROM

MMAP TLB Only for 440/464/465: If this entry is present, the BDI checks every mem-
ory access against the current TLB setting. This avoids illegal memory ac-
cesses. Don’t mix the two different MMAP entry types.

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 24

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

Adding entries to the 440/464/465 TLB:
For 440/464/465 cores, it is necessary to setup the TLB before memory can be accessed. This is
because the MMU is always enabled. The init list entries STLB/WTLB allows an initial setup of the
TLB array. The first WTLB entry also clears the whole TLB array.

WTLB epn rpn Only for 440/464/465 (for 476 see next page): Adds an entry to the TLB
array. For parameter description see below. A TLB entry can also be addd
via a Telnet command (enter WTLB at the telnet for a description).

epn the effective page number, size and WIMG flags
rpn the real page number and access rights
Example: WTLB 0xF0000095 0x1F00003F ;Boot Space 256MB

STLB index attrib Only for 440/464/465 (for 476 see next page): Sets a new start index, the
TID and some TLB attributes for the following TLB writes (WTLB).

index the start index of the following TLB writes.
attrib defines the TID and some TLB attributes
Example: STLB 3 0x00000005 ; Index=3, TID=5

STLB 7 0x00007000 ; Index=7, U1,U2,U3, TID=0

The epn parameter defines the effective page number, endian, space, size and WIMG flags:

+----------------------+-+-+----+----+
| EPN |E|S|SIZE|WIMG|
+----------------------+-+-+----+----+
 22 1 1 4 4

The rpn parameter defines the real page number and access rights:

+----+------------------------+------+
|ERPN| RPN |XWRXWR|
+----+------------------------+------+
 4 22 6

Not all fields of a TLB entry are defined with the above values. The other values except the valid bit
are set to zero unless defined with the optional STLB init list entry. The XWRXWR field starts with
the user access rights. See also 440/464/465 user’s manual part "Memory Management".

The attrib parameter of the STLB entry has the following bit definitions:

+----------+------+----+----+--------+
|----------|FWIDID|UUUU|----| TID |
+----------+------+----+----+--------+
 10 6 4 4 8

The following example clears the TLB and adds two entries to access ROM and SDRAM:

[INIT]
; Setup TLB
WTLB 0xF0000095 0x1F00003F ;Boot Space 256MB, cache inhibited, guarded
WTLB 0x00000098 0x0000003F ;SDRAM 256MB @0x00000000, write-through

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 25

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

Adding entries to the 476 TLB:
For 476 cores, it is necessary to setup the TLB before memory can be accessed. This is because the
MMU is always enabled. The init list entries STLB/WTLB allows an initial setup of the TLB array.

WTLB epn rpn Only for 476: Adds an entry to the TLB array. For parameter description
see below. A TLB entry can also be addd via a Telnet command (enter
WTLB at the telnet for a description).

epn defines TLB Word 0 [0:27]
rpn defines RPN and TLB Word 2 [20:31]

STLB way erpn Only for 476: Defines the way, the TID, ERPN and some TLB attributes for
the following TLB write (WTLB).

way defines way, bolted and TID
erpn defines ERPN and TLB Word 2 [0:19]

The epn parameter defines the effective page number, space and size:

+--------------------+-+-+------+----+
| EPN |V|S| SIZE |----|
+--------------------+-+-+------+----+
 20 1 1 6 4

The rpn parameter defines the real page number, WIMG flags, endian and access rights:

+--------------------+------------+
| RPN |WIMGE-XWRXWR|
+--------------------+------------+
 20 12

The way parameter selects the way, bolted and TID (see also 476 tlbwe instruction):

+----+----+--------+----------------+
|Www-|Bbbb|--------| TID |
+----+----+--------+----------------+
 4 4 8 16

The erpn parameter defines cache flags, user bits and the extended real page number:

+--------------------+------------+
|--------------IDUUUU| ERPN |
+--------------------+------------+
 20 12

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 26

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

3.2.2 Part [TARGET]

The part [TARGET] defines some target specific values.

CPUTYPE type [core [soc]] [FPU]
This value gives the BDI information about the connected CPU/core. Add
FPU for chips with integrated floating point unit. Accessing FPU registers
needs a workspace in target RAM. See WORKSPACE parameter.

type The CPU type from the following list:
401, 403, 405, 440, 464, 465, 476, AXX3500
APM86xxx, APM86290, APM86190,
APM86391, APM86392, APM86491,
APM86691, APM86692, APM86771, APM86791

core the core number within the SOC (0...7)
soc the SOC number (0...3)
Example: CPUTYPE 440 FPU

#0 CPUTYPE APM86290 0 0
#1 CPUTYPE APM86290 1 0

JTAGCLOCK value With this value you select the JTAG clock frequency.
value The JTAG clock frequency in Hertz or an index value

from the following table:
0 = 32 MHz 6 = 1 MHz 12 = 10 kHz
1 = 16 MHz 7 = 500 kHz 13 = 5 kHz
2 = 11 MHz 8 = 200 kHz 14 = 2 kHz
3 = 8 MHz 9 = 100 kHz 15 = 1 kHz
4 = 5 MHz 10 = 50 kHz
5 = 4 MHz 11 = 20 kHz

Example: JTAGCLOCK 1 ; JTAG clock is 16 MHz

RESET type [time] Defines the reset type the BDI uses when reseting the target via the JTAG
debug port or via debug connector pin 13.

type NONE, CORE, CHIP, SYSTEM (default)
HARD (via debug connector pin 13)

time The time in milliseconds the BDI assert the reset signal.
Example: RESET CHIP ; IOP480 does not support system reset

WAKEUP time This entry in the init list allows to define a delay time (in ms) the BDI inserts
between forcing a target reset and starting communicating with the target.

time the delay time in milliseconds
Example: WAKEUP 3000 ; insert 3sec wake-up time

MEMDELAY time This entry in the init list allows to define a delay time (in TCK’s) the BDI
inserts for memory block reads between stuffing the "lwzu" instruction and
reading the loaded GPR. Maybe used when dumping slow memory.

time the delay time in multiple of 8 TCK’s (default 10 x 8)
Example: MEMDELAY 2 ;16 TCK's memory read access delay

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 27

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

STARTUP mode [runTime] [RUN|HALT]
This parameter selects the core startup mode and for APM86xxx if the
core should be halted after sleep/powerdown.
The following startup modes are supported:

HALT This default mode forces the core to debug mode imme-
diately out of reset. No code is executed after reset.

STOP In this mode, the BDI lets the core execute code for "run-
time" milliseconds after reset. This mode is useful when
monitor code should initialize the target system.

RUN After reset, the core executes code until stopped by the
Telnet "halt" command.

WAIT Same as RUN but don’t poll core status until selected via
Telnet "select" command.

 [RUN|HALT] APM86xxx: Defines if a core should be halted after
sleep/powerdown. The default is RUN.

Example: STARTUP STOP 3000 ; let the CPU run for 3 seconds

BREAKMODE mode This parameter defines how breakpoints are implemented. The current
mode can also be changed via the Telnet interface

SOFT This is the normal mode. Breakpoints are implemented
by replacing code with a TRAP instruction.

HARD In this mode, the PPC breakpoint hardware is used.
Only 2 / 4 breakpoints at a time are supported.

Example: BREAKMODE HARD

STEPMODE mode This parameter defines how single step (instruction step) is implemented.
The alternate step mode (HWBP) is useful when stepping instructions that
causes a TLB miss exception.

JTAG This is the default mode. The step feature of the JTAG
debug interface is used for single stepping.

HWBP In this mode, one or two hardware breakpoints are used
to implement single stepping. Use this mode when de-
bugging a Linux kernel.

Example: STEPMODE HWBP

REGLIST list In order to optimize the time spent to read registers, this parameter can be
used. You can define which register group is really read from the target.
By default STD and FPR are read and transferred.
The following names are use to select a register group:

STD The standard register block. The FPR registers are not
read from the target but transferred. You can’t disable
this register group.

FPR The floating point registers are read and transferred.
SPR Some additional special purpose register.
ALL Include all register groups
Example: REGLIST STD ; only standard registers

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 28

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

VECTOR CATCH When this line is present, the BDI catches all unhandled exceptions.
Catching exceptions is only possible if the vector table is writable.

Example: VECTOR CATCH ; catch unhandled exception

MMU XLAT [kb] The BDI supports Linux kernel debugging when MMU is on. If this line is
present, the BDI assumes that all addresses received from GDB and Tel-
net are virtual addresses. The optional parameter defines the kernel virtu-
al base address (default is 0xC0000000) and is used for default address
translation. If necessary the BDI creates appropriate TLB entries before
accessing memory based on information found in the kernel page table.
For more information see also chapter "Embedded Linux MMU Support".
If not zero, the 12 lower bits of "kb" defines the position of the page present
bit in a page table entry. By default 0x002 (440: 0x001)is assumed for the
page present bit. The position depends on the Linux kernel version.

kb The kernel virtual base address (KERNELBASE)
Example: MMU XLAT ;enable support for virtual addresses

MMU XLAT 0xC0000020 ; page present bit is 0x020

PTBASE addr This parameter defines the physical memory address where the BDI looks
for the virtual address of the array with the two page table pointers. For
more information see also chapter "Embedded Linux MMU Support".

addr Physical address of the memory used to store the virtual
address of the array with the two page table pointers.

Example: PTBASE 0xf0

SIO port [baudrate] When this line is present, a TCP/IP channel is routed to the BDI’s RS232
connector. The port parameter defines the TCP port used for this BDI to
host communication. You may choose any port except 0 and the default
Telnet port (23). On the host, open a Telnet session using this port. Now
you should see the UART output in this Telnet session. You can use the
normal Telnet connection to the BDI in parallel, they work completely in-
dependent. Also input to the UART is implemented.

port The TCP/IP port used for the host communication.
baudrate The BDI supports 2400 ... 115200 baud
Example: SIO 7 9600 ;TCP port for virtual IO

WORKSPACE address In order to access the floating-point registers, the BDI needs a workspace
of 8 bytes in target RAM. Enter the base address of this RAM area.

address the address of the RAM area
Example: WORKSPACE 0x00000000

HALT [HIGH | LOW] With this parameter it is possible to define if the HALT signal is active low
(default) or active high.

Example: HALT HIGH ;HALT signal is active high

CGROUP cores This parameter gives the BDI information about how to restart multiple
cores at the same time in response to a GDB continue command. See
chapter Multi-Core Support.

cores The selected cores as bitmap.
Example: #0 CGROUP 0x0f ;GDB continue core group (restart)

#1 CGROUP 0x02 ;GDB continue core group (prepare)

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 29

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

Daisy chained JTAG devices:
For PPC4xx targets, the BDI can also handle systems with multiple devices connected to the JTAG
scan chain. In order to put the other devices into BYPASS mode and to count for the additional by-
pass registers, the BDI needs some information about the scan chain layout. Enter the number
(count) and total instruction register (irlen) length of the devices present before the PPC4xx chip (Pre-
decessor). Enter the appropriate information also for the devices following the PPC4xx chip (Succes-
sor):

SCANPRED count irlen This value gives the BDI information about JTAG devices present before
the PPC4xx chip in the JTAG scan chain.

count The number of preceding devices (0 ... 31)
irlen The sum of the length of all preceding instruction regis-

ters (IR) (0 ... 1024)
Example: SCANPRED 1 8 ; one device with an IR length of 8

SCANSUCC count irlen This value gives the BDI information about JTAG devices present after the
PPC4xx chip in the JTAG scan chain.

count The number of succeeding devices (0 ... 31)
irlen The sum of the length of all succeeding instruction reg-

isters (IR) (0 ... 1024)
Example: SCANSUCC 2 12 ; two device with an IR length of 8+4

SCANMISC len val pos This option has been added to support Xilinx Virtex-II Pro 405 cores. The
IR length of a 405 core is 4 (instead of 7) and if the FPGA JTAG is daisy
chained ,it needs a special IR value (not bypass). Also the FPGA has ac-
tually no bypass register if IR is loaded with 100000 .

len The length of the 405 IR register (default is 7)
val The IR value for the device(s) connected after the device

under test. Only 8 bits can be defined.
Default is 0xFF (bypass).

pos The position of the LSB of special IR value. The number
of bits in the scan chain after the LSB (default is 0).

Example: SCANMISC 4 0xE0 ; IR len = 4, IR lsb = 11100000
SCANMISC 8 ; 440GX has 8 bit IR length

The following example shows a configuration for the a Xilinx Virtex-II Pro with one 405 daisy chained
with the FPGA JTAG (405-FPGA):

SCANPRED 0 0
SCANSUCC 0 6 ;6 (FPGA)
SCANMISC 4 0xE0 ;IR length = 4, IR LSB = ..100000

The following example shows a configuration for the a Xilinx Virtex-II Pro with four 405 daisy chained
with the FPGA JTAG (405-405-405-405-FPGA). The second 405 is selected for debugging :

SCANPRED 1 4 ;4 (405)
SCANSUCC 2 14 ;8 (2*405) + 6 (FPGA)
SCANMISC 4 0xE0 ;IR length = 4, IR LSB = ..100000

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 30

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

Xilinx Virtex-II Pro JTAG configurations with FPGA in scan chain :

405-FPGA:
SCANPRED 0 0
SCANSUCC 0 6 ;6 (FPGA)
SCANMISC 4 0xE0 ;IR length = 4, IR LSB = ..100000

405-405-FPGA:
SCANPRED 0 0
SCANSUCC 1 10 ;4 (405) + 6 (FPGA)
SCANMISC 4 0xE0 ;IR length = 4, IR LSB = ..100000

405-405-FPGA:
SCANPRED 1 4 ;4 (405)
SCANSUCC 0 6 ;6 (FPGA)
SCANMISC 4 0xE0 ;IR length = 4, IR LSB = ..100000

405-405-405-405-FPGA:
SCANPRED 0 0
SCANSUCC 3 18 ;12 (3*405) + 6 (FPGA)
SCANMISC 4 0xE0 ;IR length = 4, IR LSB = ..100000

405-405-405-405-FPGA:
SCANPRED 1 4 ;4 (405)
SCANSUCC 2 14 ;8 (2*405) + 6 (FPGA)
SCANMISC 4 0xE0 ;IR length = 4, IR LSB = ..100000

405-405-405-405-FPGA:
SCANPRED 2 8 ;8 (2*405)
SCANSUCC 1 10 ;4 (405) + 6 (FPGA)
SCANMISC 4 0xE0 ;IR length = 4, IR LSB = ..100000

405-405-405-405-FPGA:
SCANPRED 3 12 ;12 (3*405)
SCANSUCC 0 6 ;6 (FPGA)
SCANMISC 4 0xE0 ;IR length = 4, IR LSB = ..100000

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 31

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

Xilinx Virtex-II Pro JTAG configurations without FPGA in scan chain :

405:
SCANPRED 0 0
SCANSUCC 0 0
SCANMISC 4 ;IR length = 4

405-405:
SCANPRED 0 0
SCANSUCC 1 4 ;4 (1*405)
SCANMISC 4 ;IR length = 4

405-405:
SCANPRED 1 4 ;4 (1*405)
SCANSUCC 0 0
SCANMISC 4 ;IR length = 4

405-405-405-405:
SCANPRED 0 0
SCANSUCC 3 12 ;12 (3*405)
SCANMISC 4 ;IR length = 4

405-405-405-405:
SCANPRED 1 4 ;4 (1*405)
SCANSUCC 2 8 ;8 (2*405)
SCANMISC 4 ;IR length = 4

405-405-405-405:
SCANPRED 2 8 ;8 (2*405)
SCANSUCC 1 4 ;4 (1*405)
SCANMISC 4 ;IR length = 4

405-405-405-405:
SCANPRED 3 12 ;12 (3*405)
SCANSUCC 0 0
SCANMISC 4 ;IR length = 4

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 32

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

3.2.3 Part [HOST]

The part [HOST] defines some host specific values.

IP ipaddress The IP address of the host.
ipaddress the IP address in the form xxx.xxx.xxx.xxx
Example: IP 151.120.25.100

FILE filename The default name of the file that is loaded into RAM using the Telnet ’load’
command. This name is used to access the file via TFTP. If the filename
starts with a $, this $ is replace with the path of the configuration file name.

filename the filename including the full path or $ for relative path.
Example: FILE F:\gnu\demo\ppc\test.elf

FILE $test.elf

FORMAT format [offset] The format of the image file and an optional load address offset. Currently
S-record, a.out and ELF formats are supported. If the image is already
stored in ROM on the target, select ROM as the format. The optional pa-
rameter "offset" is added to any load address read from the image file.

format SREC, AOUT, ELF, IMAGE* or ROM
Example: FORMAT ELF

FORMAT ELF 0x10000

LOAD mode In Agent mode, this parameters defines if the code is loaded automatically
after every reset.

mode AUTO, MANUAL
Example: LOAD MANUAL

START address The address where to start the program file. If this value is not defined and
the core is not in ROM, the address is taken from the image file. If this val-
ue is not defined and the core is already in ROM, the PC will not be set
before starting the program file. This means, the program starts at the nor-
mal reset address (0xFFFFFFFC).

address the address where to start the program file
Example: START 0x1000

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 33

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

DEBUGPORT port [RECONNECT]
The TCP port GDB uses to access the target. If the RECONNECT param-
eter is present, an open TCP/IP connection (Telnet/GDB) will be closed if
there is a connect request from the same host (same IP address).

port the TCP port number (default = 2001)
Example: DEBUGPORT 2001

PROMPT string This entry defines a new Telnet prompt. The current prompt can also be
changed via the Telnet interface.

Example: PROMPT 440GX>

DUMP filename The default file name used for the Telnet DUMP command.
filename the filename including the full path
Example: DUMP dump.bin

TELNET mode By default the BDI sends echoes for the received characters and supports
command history and line editing. If it should not send echoes and let the
Telnet client in "line mode", add this entry to the configuration file.

mode ECHO (default), NOECHO or LINE
Example: TELNET NOECHO ; use old line mode

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 34

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

3.2.4 Part [FLASH]

The Telnet interface supports programming and erasing of flash memories. The bdiGDB system has
to know which type of flash is used, how the chip(s) are connected to the CPU and which sectors to
erase in case the ERASE command is entered without any parameter.

CHIPTYPE type This parameter defines the type of flash used. It is used to select the cor-
rect programming algorithm.

format AM29F, AM29BX8, AM29BX16, I28BX8, I28BX16,
AT49, AT49X8, AT49X16, STRATAX8, STRATAX16,
MIRROR, MIRRORX8, MIRRORX16,
S29M64X8, S29M32X16, S29GLSX16, S29VSRX16,
M58X32, AM29DX16, AM29DX32

Example: CHIPTYPE AM29F

CHIPSIZE size The size of one flash chip in bytes (e.g. AM29F010 = 0x20000). This value
is used to calculate the starting address of the current flash memory bank.

size the size of one flash chip in bytes
Example: CHIPSIZE 0x80000

BUSWIDTH width [PLXFIX]Enter the width of the memory bus that leads to the flash chips. Do not
enter the width of the flash chip itself. The parameter CHIPTYPE carries
the information about the number of data lines connected to one flash
chip. For example, enter 16 if you are using two AM29F010 to build a 16bit
flash memory bank. The additional parameter PLXFIX is necessary if you
program AMD/Atmel flashes with a PLX IOP480 target system.

with the width of the flash memory bus in bits (8 | 16 | 32)
Example: BUSWIDTH 16

FILE filename The default name of the file that is programmed into flash using the Telnet
’prog’ command. This name is used to access the file via TFTP. If the file-
name starts with a $, this $ is replace with the path of the configuration file
name. This name may be overridden interactively at the Telnet interface.

filename the filename including the full path or $ for relative path.
Example: FILE F:\gnu\ppc\bootrom.hex

FILE $bootrom.hex

FORMAT format [offset] The format of the file and an optional address offset. The optional param-
eter "offset" is added to any load address read from the program file.

format SREC, BIN, AOUT, ELF or IMAGE
Example: FORMAT SREC

FORMAT ELF 0x10000

WORKSPACE address If a workspace is defined, the BDI uses a faster programming algorithm
that runs out of RAM on the target system. Otherwise, the algorithm is pro-
cessed within the BDI. The workspace is used for a 1kByte data buffer and
to store the algorithm code. There must be at least 2kBytes of RAM avail-
able for this purpose.

address the address of the RAM area
Example: WORKSPACE 0x00000000

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 35

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

ERASE addr [increment count] [mode [wait]]
The flash memory may be individually erased or unlocked via the Telnet
interface. In order to make erasing of multiple flash sectors easier, you can
enter an erase list. All entries in the erase list will be processed if you enter
ERASE at the Telnet prompt without any parameter. This list is also used
if you enter UNLOCK at the Telnet without any parameters. With the "in-
crement" and "count" option you can erase multiple equal sized sectors
with one entry in the erase list.

address Address of the flash sector, block or chip to erase
increment If present, the address offset to the next flash sector
count If present, the number of equal sized sectors to erase
mode BLOCK, CHIP, UNLOCK

Without this optional parameter, the BDI executes a sec-
tor erase. If supported by the chip, you can also specify
a block or chip erase. If UNLOCK is defined, this entry is
also part of the unlock list. This unlock list is processed
if the Telnet UNLOCK command is entered without any
parameters.
Note: Chip erase does not work for large chips because
the BDI time-outs after 3 minutes. Use block erase.

wait The wait time in ms is only used for the unlock mode. Af-
ter starting the flash unlock, the BDI waits until it pro-
cesses the next entry.

Example: ERASE 0xff040000 ;erase sector 4 of flash
ERASE 0xff060000 ;erase sector 6 of flash
ERASE 0xff000000 CHIP ;erase whole chip(s)
ERASE 0xff010000 UNLOCK 100 ;unlock, wait 100ms
ERASE 0xff000000 0x10000 7 ; erase 7 sectors

Example for the PPC405 evaluation board flash memory:

[FLASH]
WORKSPACE 0x00004000 ;workspace in target RAM for fast programming algorithm
CHIPTYPE AM29F ;Flash type
CHIPSIZE 0x80000 ;The size of one flash chip in bytes (AM29F040 = 0x80000)
BUSWIDTH 8 ;The width of the flash memory bus in bits (8 | 16 | 32)
FILE E:\cygnus\root\usr\demo\evb405\evb405gp.sss ;The file to program
ERASE 0xFFF80000 ;erase sector 0 of flash in U7 (AM29F040)
ERASE 0xFFF90000 ;erase sector 1 of flash
ERASE 0xFFFA0000 ;erase sector 2 of flash

the above erase list maybe replaces with:

ERASE 0xFFF80000 0x10000 3 ;erase 3 sectors

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 36

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

Supported standard parallel NOR Flash Memories:

There are different flash algorithm supported. Almost all currently available parallel NOR flash mem-
ories can be programmed with one of these algorithm. The flash type selects the appropriate algo-
rithm and gives additional information about the used flash.

On our web site (www.abatron.ch -> Debugger Support -> GNU Support -> Flash Support) there is a
PDF document available that shows the supported parallel NOR flash memories.

Some newer Spansion MirrorBit flashes cannot be programmed with the MIRRORX16 algorithm be-
cause of the used unlock address offset. Use S29M32X16 for these flashes.

The AMD and AT49 algorithm are almost the same. The only difference is, that the AT49 algorithm
does not check for the AMD status bit 5 (Exceeded Timing Limits).

Only the AMD and AT49 algorithm support chip erase. Block erase is only supported with the AT49
algorithm. If the algorithm does not support the selected mode, sector erase is performed. If the chip
does not support the selected mode, erasing will fail. The erase command sequence is different only
in the 6th write cycle. Depending on the selected mode, the following data is written in this cycle (see
also flash data sheets): 0x10 for chip erase, 0x30 for sector erase, 0x50 for block erase.
To speed up programming of Intel Strata Flash and AMD MirrorBit Flash, an additional algorithm is
implemented that makes use of the write buffer. The Strata algorithm needs a workspace, otherwise
the standard Intel algorithm is used.

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 37

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

Note:
Some Intel flash chips (e.g. 28F800C3, 28F160C3, 28F320C3) power-up with all blocks in locked
state. In order to erase/program those flash chips, use the init list to unlock the appropriate blocks:

WM16 0xFFF00000 0x0060 unlock block 0
WM16 0xFFF00000 0x00D0
WM16 0xFFF10000 0x0060 unlock block 1
WM16 0xFFF10000 0x00D0

....
WM16 0xFFF00000 0xFFFF select read mode

 or use the Telnet "unlock" command:

UNLOCK [<addr> [<delay>]]

addr This is the address of the sector (block) to unlock

delay A delay time in milliseconds the BDI waits after sending the unlock com-
mand to the flash. For example, clearing all lock-bits of an Intel J3 Strata
flash takes up to 0.7 seconds.

If "unlock" is used without any parameter, all sectors in the erase list with the UNLOCK option are
processed.

To clear all lock-bits of an Intel J3 Strata flash use for example:

BDI> unlock 0xFF000000 1000

To erase or unlock multiple, continuous flash sectors (blocks) of the same size, the following Telnet
commands can be used:

ERASE <addr> <step> <count>
UNLOCK <addr> <step> <count>

addr This is the address of the first sector to erase or unlock.

step This value is added to the last used address in order to get to the next sec-
tor. In other words, this is the size of one sector in bytes.

count The number of sectors to erase or unlock.

The following example unlocks all 256 sectors of an Intel Strata flash (28F256K3) that is mapped to
0x00000000. In case there are two flash chips to get a 32bit system, double the "step" parameter.

BDI> unlock 0x00000000 0x20000 256

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 38

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

3.2.5 Part [REGS]

In order to make it easier to access target registers via the Telnet interface, the BDI can read in a
register definition file. In this file, the user defines a name for the register and how the BDI should
access it (e.g. as memory mapped, memory mapped with offset, ...). The name of the register defi-
nition file and information for different registers type has to be defined in the configuration file.
The register name, type, address/offset/number and size are defined in a separate register definition
file.

An entry in the register definition file has the following syntax:

name type addr [size [SWAP]]

name The name of the register (max. 15 characters)

type The register type
GPR General purpose register
SPR Special purpose register
PMR Performance monitor register
DCR Device control register
MM Absolute direct memory mapped register
DMM1...DMM4 Relative direct memory mapped register
PMM1...PMM4 Physical relative direct memory mapped register
IMM1...IMM4 Indirect memory mapped register
IDCR1...IDCR8 Indirect accessed device control register

addr The address, offset or number of the register

size The size (8, 16, 32) of the register (default is 32)

SWAP If present, the bytes of a 16bit or 32bit register are swapped. This is useful
to access little endian ordered registers (e.g. PCI configuration registers).

The PMMn register type allows to access 440/464/465 registers that are located above the 4 GB ef-
fective address range. The BDI first checks if there is already a valid TLB entry present to access this
physical address. If no TLB entry allows to access this address, the BDI creates a temporary TLB
entry.

[REGS]
PMM1 0x20000 ;PCI (base addr 2_0000_0000)
PMM2 0x14000 ;Peripheral (base addr 1_4000_0000)
FILE $reg440gx.def

pcix0_vendid PMM10x0EC80000 16 SWAP
pcix0_devid PMM10x0EC80002 16 SWAP
...

emac0_mr0 PMM20x00000800 32
emac0_mr1 PMM20x00000804 32
...

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 39

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

The following entries are supported in the [REGS] part of the configuration file:

FILE filename The name of the register definition file. This name is used to access the
file via TFTP. If the filename starts with a $, this $ is replace with the path
of the configuration file name. The file is loaded once during BDI startup.

filename the filename including the full path
Example: FILE C:\bdi\regs\ppc405gp.def

DMMn base This defines the base address of direct memory mapped registers. This
base address is added to the individual offset of the register.

base the base address
Example: DMM1 0x01000

PMMn base This defines the upper 20 bits of the 36-bit physical base address of phys-
ically direct memory mapped registers. This base address is added to the
individual offset of the register.

base the upper 20 bits of the 36-bit physical base address
Example: PMM1 0x14000 ;Peripheral (base addr 1_4000_0000)

PMM2 0x20000 ;PCI (base addr 2_0000_0000)

IMMn addr data This defines the addresses of the memory mapped address and data reg-
isters of indirect memory mapped registers. The address of a IMMn regis-
ter is first written to "addr" and then the register value is access using
"data" as address.

addr the address of the Address register
data the address of the Data register
Example: IMM1 0x04700000 0x04700004

IDCRn addr data This defines the numbers of the address and data DCR of indirectly ac-
cessed DCR’s. The address of an IDCRn register is first written to "Addr-
DCR" and then the register value is access using the "Data-DCR".

addr the number of the Address DCR
data the number of the Data DCR
Example: IDCR1 16 17 ;MEMCFGADR and MEMCFGDATA

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 40

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

Example for a register definition (PPC405GP):

Entry in the configuration file:

[REGS]
IDCR1 0x010 0x011 ;MEMCFGADR and MEMCFGDATA
IDCR2 0x012 0x013 ;EBCCFGADR and EBCCFGDATA
IDCR3 0x014 0x015 ;KIAR and KIDR
FILE E:\cygnus\root\usr\demo\evb405\reg405gp.def

The register definition file:

;name type addr size
;---
;
sp GPR 1
;
; Special Purpose Registers
;
ccr0 SPR 947
ctr SPR 9
dac1 SPR 1014
dac2 SPR 1015
dbcr0 SPR 1010
dbcr1 SPR 957
dccr SPR 1018

....
;
; Directly Accessed DCR's
;
pesr DCR 0x084
pear DCR 0x086
pacr DCR 0x087
gesr0 DCR 0x0A0

....
;
; Indirectly Accessed DCR's
;
; IDCR1 must be set to MEMCFGADR and MEMCFGDATA
; IDCR2 must be set to EBCCFGADR and EBCCFGDATA
; IDCR3 must be set to KIAR and KIDR
;
besra IDCR1 0x000
besrb IDCR1 0x008
bear IDCR1 0x010
mcopt1 IDCR1 0x020
rtr IDCR1 0x030

....
;
; Memory-Mapped Registers
;
pmm0la MM 0xEF400000 32
pmm0ma MM 0xEF400004 32
pmm0pcila MM 0xEF400008 32

....

Now the defined registers can be accessed by name via the Telnet interface:

BDI> rd mcopt1
BDI> rm rtr 0x05f00000

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 41

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

3.3 Debugging with GDB

Because the GDB server runs within the BDI, no debug support has to be linked to your application.
There is also no need for any BDI specific changes in the application sources.

3.3.1 Target setup

Target initialization may be done at two places. First with the BDI configuration file, second within the
application. The setup in the configuration file must at least enable access to the target memory
where the application will be loaded. Disable the watchdog and setting the CPU clock rate should
also be done with the BDI configuration file. Application specific initializations like setting the timer
rate are best located in the application startup sequence.

3.3.2 Connecting to the target

As soon as the target comes out of reset, BDI initializes it and loads your application code. If RUN is
selected, the application is immediately started, otherwise only the target PC is set. BDI now waits
for GDB request from the debugger running on the host.

After starting the debugger, it must be connected to the remote target. This can be done with the fol-
lowing command at the GDB prompt:

(gdb)target remote bdi3000:2001

bdi3000 This stands for an IP address. The HOST file must have an appropriate
entry. You may also use an IP address in the form xxx.xxx.xxx.xxx

2001 This is the TCP port used to communicate with the BDI

If not already suspended, this stops the execution of application code and the target CPU changes
to background debug mode.
Remember, every time the application is suspended, the target CPU is frozen. During this time, no
hardware interrupts will be processed.

Note: For convenience, the GDB detach command triggers a target reset sequence in the BDI.
(gdb)...
(gdb)detach
... Wait until BDI has reset the target and reloaded the image
(gdb)target remote bdi3000:2001

Note:
After loading a program to the target you cannot use the GDB "run" command to start execution.
You have to use the GDB "continue" command.

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 42

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

3.3.3 Breakpoint Handling

GDB versions before V5.0:
GDB inserts breakpoints by replacing code via simple memory read / write commands. There is no
command like "Set Breakpoint" defined in the GDB remote protocol. When breakpoint mode HARD
is selected, the BDI checks the memory write commands for such hidden "Set Breakpoint" actions.
If such a write is detected, the write is not performed and the BDI sets an appropriate hardware break-
point. The BDI assumes that this is a "Set Breakpoint" action when memory write length is 4 bytes
and the pattern to write is 0x7D821008 (tw 12,r2,r2).

GDB version V5.x:
GDB version 5.x uses the Z-packet to set breakpoints (watchpoints). For software breakpoints, the
BDI replaces code with 0x7D821008 (tw 12,r2,r2). When breakpoint mode HARD is selected, the
BDI sets an appropriate hardware breakpoint.

User controlled hardware breakpoints:
The PPC4xx has a special watchpoint / breakpoint hardware integrated. Normally the BDI controls
this hardware in response to Telnet commands (BI, BDx) or when breakpoint mode HARD is select-
ed. Via the Telnet commands BI and BDx, you cannot access all the features of the breakpoint hard-
ware. Therefore the BDI assumes that the user will control / setup this breakpoint hardware as soon
as DBCR (DBCR0 for 405/440/464/465) is written to. This way the debugger or the user via Telnet
has full access to all features of this watchpoint / breakpoint hardware. A hardware breakpoint set via
BI or BDx gives control back to the BDI.

3.3.4 GDB monitor command

The BDI supports the GDB V5.x "monitor" command. Telnet commands are executed and the Telnet
output is returned to GDB. This way you can for example switch the BDI breakpoint mode from within
your GDB session.

(gdb) target remote bdi3000:2001
Remote debugging using bdi3000:2001
0x10b2 in start ()
(gdb) monitor break
Breakpoint mode is SOFT
(gdb) mon break hard

(gdb) mon break
Breakpoint mode is HARD
(gdb)

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 43

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

3.3.5 Target serial I/O via BDI

A RS232 port of the target can be connected to the RS232 port of the BDI3000. This way it is possible
to access the target’s serial I/O via a TCP/IP channel. For example, you can connect a Telnet session
to the appropriate BDI3000 port. Connecting GDB to a GDB server (stub) running on the target
should also be possible.

The configuration parameter "SIO" is used to enable this serial I/O routing.
The used framing parameters are 8 data, 1 stop and not parity.

[TARGET]
....
SIO 7 9600 ;Enable SIO via TCP port 7 at 9600 baud

Warning!!!
Once SIO is enabled, connecting with the setup tool to update the firmware will fail. In this case either
disable SIO first or disconnect the BDI from the LAN while updating the firmware.

Target System

Ethernet (10/100 BASE-T)

BDI3000

PPC

RS
23

2RS232 Connector

RS232 POWER

54321

9876
1 - NC
2 - RXD
3 - TXD
4 - NC
5 - GROUND
6 - NC
7 - NC
8 - NC
9 - NC

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 44

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

3.3.6 Embedded Linux MMU Support

The bdiGDB system supports Linux kernel debugging when MMU is on. The MMU configuration pa-
rameter enables this mode of operation. In this mode, all addresses received from GDB or Telnet are
assumed to be virtual. Before the BDI accesses memory, it either translates this address into a phys-
ical one or creates an appropriate TLB entry based on information found in the kernel page tables. A
new TLB entry is only added if there is not already a matching one present.

In order to search the page tables, the BDI needs to know the start addresses of the first level page
tables. The configuration parameter PTBASE defines the physical address where the BDI looks for
the address of an array with two addresses of first level page tables. The first one points normally to
the kernel page table, the second one can point to the current user page table. As long as the base
pointer or the first entry is zero, the BDI does only default translation.
Default translation maps addresses in the range KERNELBASE...(KERNELBASE + 0x0FFFFFFF)
to 0x00000000...0x0FFFFFFF. The second page table is only searched if its address is not zero and
there was no match in the first one.

The pointer stucture is as follows:

PTBASE (physical address) ->
PTE pointer pointer(virtual or physical address) ->

PTE kernel pointer (virtual or physical address)
PTE user pointer (virtual or physical address)

Newer versions of "arch/ppc/kernel/head_4xx.S" support the automatic update of the BDI page table
information structure. Search "head_4xx.S" for "abatron" and you will find the BDI specific exten-
sions.

Extract from the configuration file:

[INIT]
......
WM32 0x000000f0 0x00000000 ;invalidate page table base

[TARGET]
....
STEPMODE HWBP ;JTAG or HWBP, HWPB uses one or two hardware breakpoints
MMU XLAT ;MMU support enabled
PTBASE 0x000000f0 ;here is the pointer to the page table pointers

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 45

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

To debug the Linux kernel when MMU is enabled you may use the following load and startup se-
quence:

• Load the compressed linux image

• Set a hardware breakpoint with the Telnet at a point where MMU is enabled. For example at
"start_kernel".
BDI> BI 0xC0061550

• Start the code with GO at the Telnet

• The Linux kernel is decompressed and started

• The system should stop at the hardware breakpoint (e.g. at start_kernel)

• Disable the hardware breakpoint with the Telnet command CI.

• If not automatically done by the kernel, setup the page table pointers for the BDI.

• Start GDB with vmlinux as parameter

• Attach to the target

• Now you should be able to debug the Linux kernel

To setup the BDI page table information structure manually, set a hardware breakpoint at
"start_kernel" and use the Telnet to write the address of "swapper_pg_dir" to the appropriate place.

BDI>bi 0xc0061550 /* set breakpoint at start_kernel */
BDI>go
.. /* target stops at start_kernel */
BDI>ci
BDI>mm 0xf0 0xc00000f8 /* Let PTBASE point to an array of two pointers*/
BDI>mm 0xf8 0xc0057000 /* write address of swapper_pg_dir to first pointer */
BDI>mm 0xfc 0x00000000 /* clear second (user) pointer */

Note:
When searching the page table, the BDI needs to check the page present bit in a page table entry.
For PPC4xx targets, the position of this bit has moved around in the past. By default the BDI assumes
the following definition for the page present bit (see pgtable.h in your kernel sources):

405: #define _PAGE_PRESENT 0x002 /* software: PTE contains a translation */
440: #define _PAGE_PRESENT 0x001 /* software: PTE contains a translation */

If this does not match your version of "pgtable.h", use the 12 lower bits of the MMU XLAT parameter
to define the correct bit position.

MMU XLAT 0xC0000040 ; page present bit is 0x040

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 46

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

3.4 Telnet Interface

A Telnet server is integrated within the BDI. The Telnet channel is used by the BDI to output error
messages and other information. Also some basic debug commands can be executed.

Telnet Debug features:

• Display and modify memory locations

• Display and modify general and special purpose registers

• Single step a code sequence

• Set hardware breakpoints

• Load a code file from any host

• Start / Stop program execution

• Programming and Erasing Flash memory

During debugging with GDB, the Telnet is mainly used to reboot the target (generate a hardware re-
set and reload the application code). It may be also useful during the first installation of the bdiGDB
system or in case of special debug needs.

Multiple commands separated by a semicolon can be entered on one line.

Example of a Telnet session:

BDI>res
- TARGET: processing user reset request
- TARGET: reseting target passed
- TARGET: processing target init list
- TARGET: processing target init list passed
BDI>info
 Target state : debug mode
 Debug entry cause : trap instruction
 Current PC : 0xfffffffc
 Current CR : 0x00000000
 Current MSR : 0x00000000
 Current LR : 0x0001ba70
BDI>md 0
00000000 : 00000000 00000004 00000008 0000000c
00000010 : 00000010 00000014 00000018 0000001c
00000020 : 00000020 00000024 00000028 0000002c $...(...,
00000030 : 00000030 00000034 00000038 0000003c ...0...4...8...<
00000040 : 00000040 00000044 00000048 0000004c ...@...D...H...L

.....................

Notes:
The DUMP command uses TFTP to write a binary image to a host file. Writing via TFTP on a Linux/
Unix system is only possible if the file already exists and has public write access. Use "man tftpd" to
get more information about the TFTP server on your host.
A PPC4xx target can be forced to debug mode in two different ways. HALT at the Telnet asserts the
HALT pin to stop the processor. STOP at the Telnet uses the JTAG stop command. The HALT pin is
deasserted with the next RESET or RUN. If a JTAG reset does not completely reset a target system
(e.g. IOP480), the sequence Telnet HALT, press reset button, Telnet RESET can be used to force
the target to debug mode immediately out of reset.

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 47

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

The Telnet commands:

"MD [<address>] [<count>] display target memory as word (32bit)",
"MDH [<address>] [<count>] display target memory as half word (16bit)",
"MDB [<address>] [<count>] display target memory as byte (8bit)",
"DUMP <addr> <size> [<file>] dump target memory to a file",
"MM <addr> <value> [<cnt>] modify word(s) (32bit) in target memory",
"MMH <addr> <value> [<cnt>] modify half word(s) (16bit) in target memory",
"MMB <addr> <value> [<cnt>] modify byte(s) (8bit) in target memory",
"MT <addr> <count>[<loop>] memory test",
"MC [<address>] [<count>] calculates a checksum over a memory range",
"MV verifies the last calculated checksum",

"RD [<name>] display general purpose or user defined register",
"RDUMP [<file>] dump all user defined register to a file",
"RDFPR display floating point registers",
"RDSPR <number> display special purpose register",
"RDDCR <number> display device control register",
"RDDCRX <number> display device control register (only 46x)",
"RM {<nbr> | <name>} <value> modify general purpose or user defined register",
"RMSPR <number> <value> modify special purpose register",
"RMDCR <number> <value> modify device control register",
"RMDCRX <number> <value> modify device control register (only 46x)",

"TLB <from> [<to>] display TLB entry",
"WTLB <tid:idx> <ws0> <ws1> <ws2> write TLB entry (440/46x)",
"WTLB <way:tid> <ws0> <ws1> <ws2> write TLB entry (47x)",
"DFLUSH [<addr>] flush data cache (addr = cached memory address)",
"IFLUSH invalidate instruction cache",
"DCACHE <from> [<to>] display L1 data cache (440/46x: lines, 405: sets)",
"ICACHE <from> [<to>] display L1 inst cache (440/46x: lines, 405: sets)",

"RESET [HALT | RUN [time]] reset the target system, change startup mode",
"BREAK [SOFT | HARD] display or set current breakpoint mode",
"GO [<pc>] set PC and start current core",
"CONT [<cores>] restart multiple cores (<cores> = core bit map)",
"TI [<pc>] trace on instuction (single step)",
"TC [<pc>] trace on change of flow",
"HALT stop all cores via HALT pin",
"STOP [<cores>] stop core(s) via JTAG port (<cores> = core bit map)",
"SYNC synchronize the BDI with the core(s)",

"JMCDCR <value> APM86xxx: set Multi-Core Debug Control Register",

"BI <addr> set instruction breakpoint",
"CI [<id>] clear instruction breakpoint(s)",
"BD [R|W] <addr> set data breakpoint (32bit access)",
"BDH [R|W] <addr> set data breakpoint (16bit access)",
"BDB [R|W] <addr> set data breakpoint (8bit access)",
"CD [<id>] clear data breakpoint(s)",

"INFO display information about the current core",
"STATE display information about all cores",

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 48

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

The Telnet commands (cont.):

"LOAD [<offset>] [<file> [<format>]] load program file to target memory",
"VERIFY [<offset>] [<file> [<format>]] verify a program file to target memory",
"PROG [<offset>] [<file> [<format>]] program flash memory",
" <format> : SREC or BIN or AOUT or ELF",
"ERASE [<address> [<mode>]] erase a flash memory sector, chip or block",
" <mode> : CHIP, BLOCK or SECTOR (default is sector)",
"ERASE <addr> <step> <count> erase multiple flash sectors",
"UNLOCK [<addr> [<delay>]] unlock a flash sector",
"UNLOCK <addr> <step> <count> unlock multiple flash sectors",
"FLASH <type> <size> <bus> change flash configuration",

"DELAY <ms> delay for a number of milliseconds",
"SELECT <core> change the current core",
"HOST <ip> change IP address of program file host",
"PROMPT <string> defines a new prompt string",
"CONFIG display or update BDI configuration",
"CONFIG <file> [<hostIP> [<bdiIP> [<gateway> [<mask>]]]]",
"UPDATE reload the configuration without a reboot",
"HELP display command list",
"JTAG switch to JTAG command mode",
"BOOT [LOADER] reset the BDI and reload the configuration",
"QUIT terminate the Telnet session"

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 49

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

3.5 Multi-Core Support

The bdiGDB system supports concurrent debugging of up to 8 PPC4xx cores connected to the same
JTAG scan chain. For every core you can start its own GDB session. The default port numbers used
to attach the remote targets are 2001 ... 2008. In the Telnet you switch between the cores with the
command "select <0..7>". In the configuration file, simply begin the line with the appropriate core
number. If there is no #n in front of a line, the BDI assumes core #0.

The following example defines two PPC405 cores on the scan chain.

[TARGET]
JTAGCLOCK 0 ;use 16 MHz JTAG clock
WAKEUP 1000 ;give reset time to complete

; 405-405-FPGA
#0 CPUTYPE 405 ;the target CPU type
#0 SCANPRED 0 0
#0 SCANSUCC 1 10 ;4 (405) + 6 (FPGA)
#0 SCANMISC 4 0xE0 ;IR length = 4, IR LSB = ..100000
#0 BREAKMODE SOFT ;SOFT or HARD

; 405-405-FPGA:
#1 CPUTYPE 405 ;the target CPU type
#1 SCANPRED 1 4 ;4 (405)
#1 SCANSUCC 0 6 ;6 (FPGA)
#1 SCANMISC 4 0xE0 ;IR length = 4, IR LSB = ..100000
#1 BREAKMODE SOFT ;SOFT or HARD

The following example works with the two 465 cores in a APM86290:

[TARGET]
; common parameters
JTAGCLOCK 1 ;BDI3000: use 16 MHz JTAG clock
WAKEUP 200 ;wakeup time after reset released
RESET HARD 1000 ;assert cold reset for 1 second
;
;
; CoreID#0 parameters (active core after reset)
#0 CPUTYPE APM86290 0 0 ;core#0 in SOC#0
#0 STARTUP HALT RUN ;halt after reset, run after resume from power-down
#0 BREAKMODE HARD ;SOFT or HARD, HARD uses PPC hardware breakpoint
#0 STEPMODE HWBP ;JTAG or HWBP, HWBP uses one or two hardware breakpoints
#0 SCANPRED 1 10 ;count for SOC TAP
#0 SCANSUCC 1 4 ;count for core#1 TAP
;
; CoreID#1 parameters
#1 CPUTYPE APM86290 1 0 ;core#1 in SOC#0
#1 STARTUP WAIT ;don't handle until selected via Telnet
#1 BREAKMODE HARD ;SOFT or HARD, HARD uses PPC hardware breakpoint
#1 STEPMODE HWBP ;JTAG or HWBP, HWBP uses one or two hardware breakpoints
#1 SCANPRED 2 14 ;count for SOC and PPC0 TAP
#1 SCANSUCC 0 0 ;no TAP after PPC1 TAP
;

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 50

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

Multi-Core related Telnet commands:

STATE Display information about all cores.

SELECT <core> Change the current Telnet core

CONT <cores> Restart one or multiple cores
<cores> core bit map
Example: cont 0x03 ; restart core #0, #1

STOP [<cores>] Force one or multiple cores to debug mode. If there is no <cores> param-
eter, the currently selected core is forced to debug mode (stopped).
<cores> core bit map
Example: halt 0x03 ; stop 2 cores #0, #1

JMCDCR <value> For APM86xxx based SOC’s. Set the JTAG Multi-core Debug Control
Register. Can be used to stop / restart cores simultaneously.

Following the bit definition in JMCDCR:

STO0 (0x80000) Put core #0 into stop state (cleared by BDI)
STO1 (0x04000) Put core #1 into stop state (cleared by BDI)
STO2 (0x00200) Put core #2 into stop state (cleared by BDI)
STO3 (0x00010) Put core #3 into stop state (cleared by BDI)

STP0EN1 (0x40000) Stop core #0 when core #1 has a debug event
STP0EN2 (0x20000) Stop core #0 when core #2 has a debug event
STP0EN3 (0x10000) Stop core #0 when core #3 has a debug event

STP1EN0 (0x02000) Stop core #1 when core #0 has a debug event
STP1EN2 (0x01000) Stop core #1 when core #2 has a debug event
STP1EN3 (0x00800) Stop core #1 when core #3 has a debug event

STP2EN0 (0x00100) Stop core #2 when core #0 has a debug event
STP2EN1 (0x00080) Stop core #2 when core #1 has a debug event
STP2EN3 (0x00040) Stop core #2 when core #3 has a debug event

STP3EN0 (0x00008) Stop core #3 when core #0 has a debug event
STP3EN1 (0x00004) Stop core #3 when core #1 has a debug event
STP3EN2 (0x00002) Stop core #3 when core #2 has a debug event

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 51

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

APM86xxx Multi-Core example:

Stop both core simultaneously using the JMCDCR STOP bits:

MBA#0> state
Core#0: running
Core#1: running

MBA#0>jmcdcr 0x84000
- TARGET: core #0 has entered debug mode
- TARGET: core #1 has entered debug mode

MBA#0> state
Core#0: stopped 0x00000900 JTAG stop request
Core#1: stopped 0xfffa21e4 JTAG stop request

Start both core simultaneously:

MBA#0>jmcdcr 0x84000
MBA#0>cont 3
MBA#0>state
Core#0: running
Core#1: running

Stop core #1 when core #0 has debug event:

MBA>state
Core#0: stopped 0x0ffd1150 single step
Core#1: stopped 0xfffa21e4 JTAG stop request
MBA>bi 0x0ffd1148
Breakpoint identification is 0
MBA#0>jmcdcr 0x86000
MBA#0>cont 3
- TARGET: core #0 has entered debug mode
- TARGET: core #1 has entered debug mode
MBA>state
Core#0: stopped 0x0ffd1148 instruction breakpoint
Core#1: stopped 0xfffa21e4 JTAG stop request

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 52

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

PPC476 (LSI ACP3448) Multi-Core example:

Via Telnet all the PPC476 defined Multi-core related register are accessible. Also some special DCR
register numbers map to these registers. With the appropriate entries in the register definition file
these registers are accessible by name with the Telnet "rd" and "rm" commands.

; Special DCR's to access ACP3448 Multi-Core Debug Registers
;
mcdhltr DCR 0x1001 ;low byte defines 7-bit JTAG instruction
mcdhlts DCR 0x1009 ;low byte defines 7-bit JTAG instruction
mcdgrp0 DCR 0x1011 ;low byte defines 7-bit JTAG instruction
mcdgrp1 DCR 0x1019 ;low byte defines 7-bit JTAG instruction
mcdldbo DCR 0x1021 ;low byte defines 7-bit JTAG instruction
;
dbimask DCR 0x1100
dbomask DCR 0x1101
;

When the Telnet "cont" command is used to restart cores, then the BDI first prepares the selected
cores for restart (clears stop bit in JDCR), then clears all LDBO bits and finally clears all GRPHLT
bits. This way all cores start running together. But don’t forget to set the appropriate GRPHLT bit be-
fore using "cont".

In the following example all 4 cores are part of group #0. The example starts all cores together and
all will halt once core#0 hits the breakpoint. We setup the Multi-core debug registers via the [INIT]
section in the configuration file.

; Setup Multi-Core Debug Group
#0 WREG mcdgrp0 0xF0000000 ;GRP0 includes all cores
#0 WREG dbimask 0x80000000 ;DBIMASK: enbale DBI[0]
#1 WREG dbimask 0x80000000 ;DBIMASK
#2 WREG dbimask 0x80000000 ;DBIMASK
#3 WREG dbimask 0x80000000 ;DBIMASK
#0 WREG dbomask 0xFFFC0000 ;DBOMASK: enable all events
#1 WREG dbomask 0xFFFC0000 ;DBOMASK
#2 WREG dbomask 0xFFFC0000 ;DBOMASK
#3 WREG dbomask 0xFFFC0000 ;DBOMASK
;

acp3448#0>stat
Core#0: stopped 0xfffff00c single step
Core#1: stopped 0xfffffffc JTAG stop request
Core#2: stopped 0xfffffffc JTAG stop request
Core#3: stopped 0xfffffffc JTAG stop request
acp3448#0>bi 0xfffff018
Breakpoint identification is 0
acp3448#0>rm mcdhlts 0x80000000
acp3448#0>cont 0x0f
- TARGET: core #0 has entered debug mode
- TARGET: core #1 has entered debug mode
- TARGET: core #2 has entered debug mode
- TARGET: core #3 has entered debug mode
acp3448#0>stat
Core#0: stopped 0xfffff018 instruction breakpoint
Core#1: stopped 0xfffff05c JTAG stop request
Core#2: stopped 0xfffff058 JTAG stop request
Core#3: stopped 0xfffff058 JTAG stop request
acp3448#0>

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 53

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

Multi-Core Restart via GDB continue:

Then core specific parameter CGROUP allows to define a group of cores that should be restarted
when GDB sends the "continue" command to the BDI. This has the same effect as the Telnet "cont"
command.To halt a group of cores use the Cross-Trigger functions of the processor. Have a look at
the ACP3448 configuration example below. Via the new CGROUP parameter you define what the
BDI does in response to the GDB continue command:

• If there is no CGROUP defined then the core is restarted as usual.

• If the CGROUP core mask defines only the actual core then this core is prepared for restart
but the final step to actually restart is made pending. To actually restart it a "continue" com-
mand from the master GDB session (see next) or the Telnet "cont" command is necessary.

• If the CGROUP core mask includes other cores beside the actual one, then all cores in the
mask are prepared for restart (if not already done) and finally the whole core group is restarted
at the same time.

This supports two different debug scenarios where the first one is actually a special case of the sec-
ond one:

• Debug only one core via GDB but make sure that always all cores are either halted or running.
For this only one CGROUP for the debugged core is necessary. The core mask defines all
the cores.

• Debug multiple cores (not necessary all cores) with different GDB sessions. Here one core
will be let's say the master core with the attached master GDB session. Always continue all
other GDB session (cores) before entering the continue command in the master GDB ses-
sion. For the master core define the CGROUP mask with all cores. For other cores set only
the bit in the core mask that represents the core itself.

Cross-Trigger setup example (for the complete configuration look at acp3448lcm.cfg):

[INIT]
;
... other configurations ...
;
; Setup Multi-Core Debug Group
#0 WREG mcdgrp0 0xF0000000 ;GRP0 includes all cores
#0 WREG dbimask 0x80000000 ;DBIMASK: enbale DBI[0]
#1 WREG dbimask 0x80000000 ;DBIMASK
#2 WREG dbimask 0x80000000 ;DBIMASK
#3 WREG dbimask 0x80000000 ;DBIMASK
#0 WREG dbomask 0xFFFC0000 ;DBOMASK: enable all events
#1 WREG dbomask 0xFFFC0000 ;DBOMASK
#2 WREG dbomask 0xFFFC0000 ;DBOMASK
#3 WREG dbomask 0xFFFC0000 ;DBOMASK
;
...
[TARGET]
; common parameters
JTAGCLOCK 16000000 ;16MHz JTAG clock
WAKEUP 100 ;wakeup time after reset released
;
; CoreID#0 parameters (active core after reset)
#0 CPUTYPE 476
#0 CGROUP 0x0f ;GDB continue core group master
...

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 54

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

3.6 Low level JTAG mode

It is possible to switch to a mode where you can enter low level JTAG commands via the Telnet in-
terface. You activate this mode via the Telnet "jtag" command. Once the BDI has entered this mode,
a new set of Telnet commands is available.

"TRST {0|1} assert (1) or release (0) TRST",
"HALT {0|1} assert (1) or release (0) HALT",
"CLK <count> <tms> clock TAP with requested TMS value",
"RIR [+] <len> read IR, zero is scanned in",
"RDR [+] <len> read DR, zero is scanned in",
"WIR [+] <len> <...b2b1b0> write IR, b0 is first scanned",
"WDR [+] <len> <...b2b1b0> write DR, b0 is first scanned",
"XIR [+] <len> <...b2b1b0> xchg IR, b0 is first scanned",
"XDR [+] <len> <...b2b1b0> xchg DR, b0 is first scanned",
" + : more data follows",
" do not exit shift-IR/DR state",
" len : the number of bits 1..256",
" bx : a data byte, two hex digits",
"RFILE <len> <file> [<succ>] dump DR to file, zero is scanned in",
"WFILE <len> <file> [<pred>] write DR from file",
"DELAY <10...50000> delay for n microseconds",
"HELP display JTAG command list",
"EXIT terminate JTAG mode"

Using this special JTAG mode is not necessary for normal debugging. But it maybe helpful to debug
JTAG connection problems. For example to discover how many JTAG devices are on the scan chain.

Following a short session that analyzes the scan chain. It puts first all TAP’s into bypass mode and
then shifts a 1 through the DR. This 1 is shifted 3 bits left, so this tells us that there are 3 TAP’s pres-
ent on the scan chain. Also IR outputs ...111111 0000000001 0001 0001 indicating that the IR length
of the 3 devices is 10-4-4.

Core#0>jtag
JTAG>xir 32 ffffffff
fffc0111
JTAG>xdr 32 00010000
00080000

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 55

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

4 Specifications
Operating Voltage Limiting 5 VDC ± 0.25 V

Power Supply Current typ. 500 mA
max. 1000 mA

RS232 Interface: Baud Rates 9’600,19’200, 38’400, 57’600,115’200
Data Bits 8
Parity Bits none
Stop Bits 1

Network Interface 10/100 BASE-T

BDM/JTAG clock up to 32 MHz

Supported target voltage 1.2 – 5.0 V

Operating Temperature + 5 °C ... +60 °C

Storage Temperature -20 °C ... +65 °C

Relative Humidity (noncondensing) <90 %rF

Size 160 x 85 x 35 mm

Weight (without cables) 280 g

Host Cable length (RS232) 2.5 m

Electromagnetic Compatibility CE compliant

Restriction of Hazardous Substances RoHS 2002/95/EC compliant

Specifications subject to change without notice

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 56

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

5 Environmental notice
Disposal of the equipment must be carried out at a designated disposal site.

6 Declaration of Conformity (CE)

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 57

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

7 Warranty and Support Terms

7.1 Hardware

ABATRON Switzerland warrants that the Hardware shall be free from defects in material and work-
manship for a period of 3 years following the date of purchase when used under normal conditions.
Failure in handling which leads to defects or any self-made repair attempts are not covered under
this warranty. In the event of notification within the warranty period of defects in material or workman-
ship, ABATRON will repair or replace the defective hardware. The customer must contact the distrib-
utor or Abatron for a RMA number prior to returning.

7.2 Software

License
Against payment of a license fee the client receives a usage license for this software product, which
is not exclusive and cannot be transferred.

Copies
The client is entitled to make copies according to the number of licenses purchased. Copies
exceeding this number are allowed for storage purposes as a replacement for defective storage
mediums.

Update and Support
The agreement includes free software maintenance (update and support) for one year from date of
purchase. After this period the client may purchase software maintenance for an additional year.

7.3 Warranty and Disclaimer

ABATRON AND ITS SUPPLIERS HEREBY DISCLAIMS AND EXCLUDES, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT.

7.4 Limitation of Liability

IN NO EVENT SHALL ABATRON OR ITS SUPPLIERS BE LIABLE TO YOU FOR ANY DAMAGES,
INCLUDING, WITHOUT LIMITATION, ANY SPECIAL, INDIRECT, INCIDENTAL OR
CONSEQUENTIAL DAMAGES, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THE HARDWARE AND/OR SOFTWARE, INCLUDING WITHOUT
LIMITATION, LOSS OF PROFITS, BUSINESS, DATA, GOODWILL, OR ANTICIPATED SAVINGS,
EVEN IF ADVISED OF THE POSSIBILITY OF THOSE DAMAGES.

The hardware and software product with all its parts, copyrights and any other rights remain in pos-
session of ABATRON. Any dispute, which may arise in connection with the present agreement shall
be submitted to Swiss Law in the Court of Zug (Switzerland) to which both parties hereby assign com-
petence.

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 58

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

Appendices

A Troubleshooting
Problem
The firmware can not be loaded.

Possible reasons

• The BDI is not correctly connected with the Host (see chapter 2).

• A wrong communication port is selected (Com 1...Com 4).

• The BDI is not powered up

Problem
No working with the target system (loading firmware is okay).

Possible reasons

• Wrong pin assignment (BDM/JTAG connector) of the target system (see chapter 2).

• Target system initialization is not correctly –> enter an appropriate target initialization list.
• An incorrect IP address was entered (BDI3000 configuration)

• BDM/JTAG signals from the target system are not correctly (short-circuit, break, ...).

• The target system is damaged.

Problem
Network processes do not function (loading the firmware was successful)

Possible reasons
• The BDI3000 is not connected or not correctly connected to the network (LAN cable or media

converter)
• An incorrect IP address was entered (BDI3000 configuration)

bdiGDB for BDI3000 (PPC4xx / APM8xxxx) User Manual 59

© Copyright 1997-2014 by ABATRON AG Switzerland V 1.06

B Maintenance
The BDI needs no special maintenance. Clean the housing with a mild detergent only. Solvents such
as gasoline may damage it.

C Trademarks
All trademarks are property of their respective holders.

	1 Introduction
	1.1 BDI3000
	1.2 BDI Configuration

	2 Installation
	2.1 Connecting the BDI3000 to Target
	2.2 Connecting the BDI3000 to Power Supply
	2.3 Status LED «MODE»
	2.4 Connecting the BDI3000 to Host
	2.4.1 Serial line communication
	2.4.2 Ethernet communication
	2.5 Installation of the Configuration Software
	2.5.1 Configuration with a Linux / Unix host
	2.5.2 Configuration with a Windows host
	2.5.3 Configuration via Telnet / TFTP
	2.6 Testing the BDI3000 to host connection
	2.7 TFTP server for Windows

	3 Using bdiGDB
	3.1 Principle of operation
	3.2 Configuration File
	3.2.1 Part [INIT]
	3.2.2 Part [TARGET]
	3.2.3 Part [HOST]
	3.2.4 Part [FLASH]
	3.2.5 Part [REGS]
	3.3 Debugging with GDB
	3.3.1 Target setup
	3.3.2 Connecting to the target
	3.3.3 Breakpoint Handling
	3.3.4 GDB monitor command
	3.3.5 Target serial I/O via BDI
	3.3.6 Embedded Linux MMU Support
	3.4 Telnet Interface
	3.5 Multi-Core Support
	3.6 Low level JTAG mode

	4 Specifications
	5 Environmental notice
	6 Declaration of Conformity (CE)
	7 Warranty and Support Terms
	7.1 Hardware
	7.2 Software
	7.3 Warranty and Disclaimer
	7.4 Limitation of Liability

	Appendices
	A Troubleshooting
	B Maintenance
	C Trademarks

