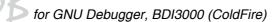


JTAG debug interface for GNU Debugger

Coldfire

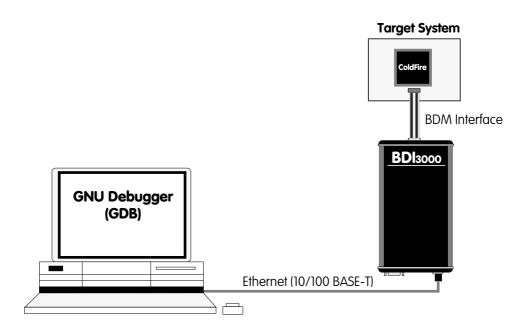
User Manual


Manual Version 1.02 for BDI3000

bdiGDB for GNU Debugger, BDI3000 (ColdFire)

1	Introduction	3
	1.1 BDI3000	3
	1.2 BDI Configuration	4
2	Installation	5
_	2.1 Connecting the BDI3000 to Target	-
	2.2 Connecting the BDI3000 to Power Supply	
	2.3 Status LED «MODE»	
	2.4 Connecting the BDI3000 to Host	
	2.4.1 Serial line communication	
	2.4.2 Ethernet communication	. 10
	2.5 Installation of the Configuration Software	.11
	2.5.1 Configuration with a Linux / Unix host	
	2.5.2 Configuration with a Windows host	
	2.5.3 Configuration via Telnet / TFTP	
	2.6 Testing the BDI3000 to host connection	
	2.7 TFTP server for Windows	. 18
3	Using bdiGDB	19
J	3.1 Principle of operation	
	3.2 Configuration File	
	3.2.1 Part [INIT]	
	3.2.2 Part [TARGET]	
	3.2.3 Part [HOST]	
	3.2.4 Part [FLASH]	
	3.2.5 Part [REGS]	
	3.3 Debugging with GDB	
	3.3.1 Target setup	
	3.3.2 Connecting to the target	
	3.3.3 Breakpoint Handling	. 34
	3.3.4 GDB monitor command	. 34
	3.3.5 Target serial I/O via BDI	
	3.4 Telnet Interface	. 36
4	Specifications	. 38
5	Environmental notice	.39
-	Declaration of Conformity (CE)	
0		. 39
7	Abatron Warranty and Support Terms	.40
	7.1 Hardware	. 40
	7.2 Software	. 40
	7.3 Warranty and Disclaimer	. 40
	7.4 Limitation of Liability	. 40
Α	ppendices	

A	Troubleshooting	41
в	Maintenance	12
С	Trademarks	12



1 Introduction

bdiGDB enhances the GNU debugger (GDB), with Background Debug Mode (BDM) debugging for ColdFire based targets. With the built-in Ethernet interface you get a very fast code download speed. No target communication channel (e.g. serial line) is wasted for debugging purposes. Even better, you can use fast Ethernet debugging with target systems without network capability. The host to BDI communication uses the standard GDB remote protocol.

An additional Telnet interface is available for special debug tasks (e.g. force a hardware reset, program flash memory).

The following figure shows how the BDI3000 interface is connected between the host and the target:

1.1 BDI3000

The BDI3000 is the main part of the bdiGDB system. This small box implements the interface between the JTAG pins of the target CPU and a 10/100Base-T Ethernet connector. The firmware of the BDI3000 can be updated by the user with a simple Linux/Windows configuration program or interactively via Telnet/TFTP. The BDI3000 supports 1.2 - 5.0 Volts target systems.

GDB for GNU Debugger, BDI3000 (ColdFire)

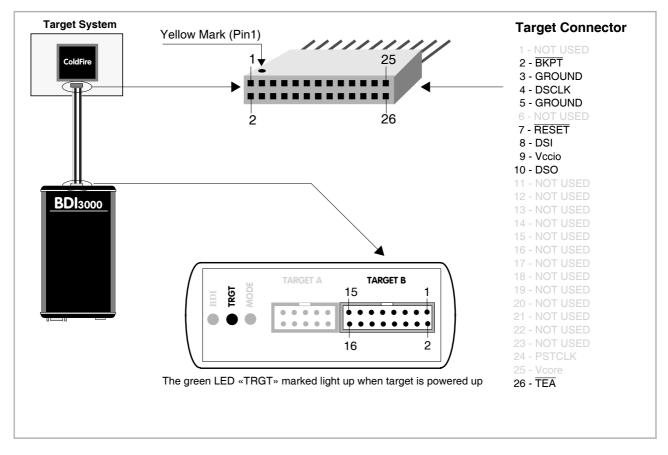
1.2 BDI Configuration

As an initial setup, the IP address of the BDI3000, the IP address of the host with the configuration file and the name of the configuration file is stored within the flash of the BDI3000. Every time the BDI3000 is powered on, it reads the configuration file via TFTP.

Following an example of a typical configuration file:

```
; Configuration file for a MCF5307 board
       _____
; the initialistion list used to setup the target system
[INIT]
WCREG 0xC0F
                 0x10000001 ;MBAR: map internal registers to 0x10000000
WCREG 0xC04
                 0x00800021 ;RAMBAR: map internal SRAM to 0x00800000
WM16 0x10000080 0xFFE0 ;CSAR0: Flash at 0xFFE00000
WM16 0x1000008A 0x0D80 ;CSCR0: Flash 3 waits, 16bit,
WM32 0x10000084 0x000F0001 ;CSMR0: Flash 1MB, R/W, valid
WM16 0x10000100 0x8230 ;DCR: SDRAM Trc=6, RC=48
WM32 0x10000108 0x00001300 ;DACR0: base=0x00000000; timing=2,4,2,1,-1; CBM=011
WM32 0x1000010C 0x003C0001 ;DCMR0: mask=4MB; enable
WM32 0x10000108 0x00001308 ;DACR0: Initiate Precharge All Command
WM32 0x00000400 0x00000000 ;Execute PALL command
WM32 0x10000108 0x00009300 ;DACR0: enable refresh
WM32 0x10000110 0x00401300 ;DACR1: base=0x00400000; timing=2,4,2,1,-1; CBM=011
WM32 0x10000114 0x007C0001 ;DCMR1: mask=8MB; enable
WM32 0x10000110 0x00401308 ;DACR1: Initiate Precharge All Command
WM32 0x00400400 0x00000000 ;Execute PALL command
WM32 0x10000110 0x00409300 ;DACR1: enable refresh
DELAY
            20
                     ;Delay for Refresh
WM32 0x10000108 0x00009340 ;DACR0: Initiate Mode Register Set Command
WM32 0x00000400 0x00000000 ;Execute MRS command
WM32 0x10000110 0x00009340 ;DACR1: Initiate Mode Register Set Command
WM32 0x00400400 0x00000000 ;Execute MRS command
[TARGET]
CPUTYPE MCF5307
CPUCLOCK 90000000 ;the CPU clock rate after processing the init list
BREAKMODE SOFT
                       ;SOFT or HARD
VECTOR CATCH
                     ;catch unhandled exceptions
[HOST]
       151.120.25.115
IP
FILE
        E:\cygnus\root\usr\demo\mcf5307\fibo.exe
FORMAT
           COFF
LOAD
         MANUAL
                    :load code MANUAL or AUTO after reset
[FLASH]
WORKSPACE 0x00800000 ;workspace in target RAM for fast programming algorithm
                     ;Flash type (AM29F | AM29BX8 | AM29BX16 | I28BX8 | I28BX16)
CHIPTYPE AM29F
CHIPSIZE 0x80000
                    ;The size of one flash chip in bytes (e.g. AM29F010 = 0x20000)
BUSWIDTH 16
                    ;The width of the flash memory bus in bits (8 | 16 | 32)
FILE
        D:\abatron\bdi360\ColdFire\pro\sbc5307.sss
         0xFFE00000 ;erase sector 0 of flash
ERASE
ERASE
         0xFFE20000 ;erase sector 1 of flash
[REGS]
DMM1 0x10000000
FILE E:\cygnus\root\usr\demo\mcf5307\reg5307.def
```

Based on the information in the configuration file, the target is automatically initialized after every reset.


2 Installation

2.1 Connecting the BDI3000 to Target

The enclosed cable to the target system is designed for the Motorola recommended 26-pin Berg connector. In case where the target system has an appropriate connector, the cable can be directly connected. The pin assignment is in accordance with the Motorola specification.

In order to ensure reliable operation of the BDI (EMC, runtimes, etc.) the target cable length must not exceed 20 cm (8").

For BDI TARGET B connector signals see table on next page.

Warning:

Before you can use the BDI3000 with an other target processor type (e.g. ColdFire <--> ARM), a new setup has to be done (see chapter 2.5). During this process the target cable must be disconnected from the target system.

To avoid data line conflicts, the BDI3000 must be disconnected from the target system while programming a new firmware for an other target CPU.

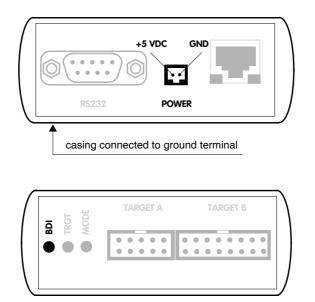
TARGET B Connector Signals

Pin	Name	Description
1	DSO	DATA SERIAL OUT For background debug mode, serial data output from the MCU.
2	<reserved></reserved>	
3	DSI	DATA SERIAL IN For background debug mode, serial data input signal to the MCU.
4	<reserved></reserved>	
5	<reserved></reserved>	
6	Vccio Target	1.2 – 5.0V: This is the target reference voltage. It indicates that the target has power and it is also used to create the logic-level reference for the input comparators. It also controls the output logic levels to the target. It is normally fed from Vcc I/O on the target board.
7	DSCLK	DEVELOPMENT SERIAL CLOCK For background debug mode, serial shift clock to the MCU.
8	ВКРТ	BREAKPOINT BKPT is an active-low signal that signals a hardware breakpoint for the ColdFire core. It is used to force the ColdFire core to enter debug mode.
9	TEA (optional)	TRANSFER ERROR ACKNOWLEDGE (currently not implemented)Active-low open-drain signal, used to abort a bus cycle.This signal may be helpful for ColdFire devices which has no built-in bus monitor (e.g.MCF5307). The BDI is able to terminate an invalid memory access. Otherwise BDMcommunication may hang until a reset is applied.
10	<reserved></reserved>	
11	<reserved></reserved>	
12	GROUND	System Ground
13	RESET	RESET Active-low open-drain signal, used to force a system reset.
14	PSTCLK (not used)	PROCESSOR STATUS CLOCK This signal is not used by the BDI3000. See note below.
15	<reserved></reserved>	
16	GROUND	System Ground

Note:

The BDI3000 does not support some older V2 cores (MCF5204, MCF5206(e) and MCF5272). These cores need synchronous BDM signals and this is not supported by the BDI3000.

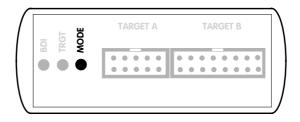
2.2 Connecting the BDI3000 to Power Supply


The BDI3000 needs to be supplied with the enclosed power supply from Abatron (5VDC).

Before use, check if the mains voltage is in accordance with the input voltage printed on power supply. Make sure that, while operating, the power supply is not covered up and not situated near a heater or in direct sun light. Dry location use only.

For error-free operation, the power supply to the BDI3000 must be between 4.75V and 5.25V DC. The maximal tolerable supply voltage is 5.25 VDC. Any higher voltage or a wrong polarity might destroy the electronics.

The green LED «BDI» marked light up when 5V power is connected to the BDI3000

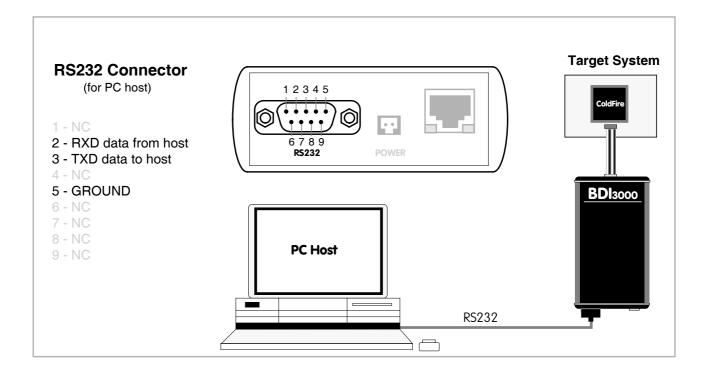

Please switch on the system in the following sequence:

- 1 -> external power supply
- 2 -> target system

bliGDB for GNU Debugger, BDI3000 (ColdFire)

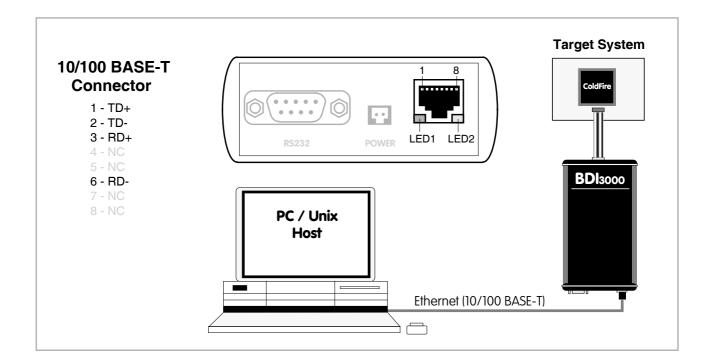
2.3 Status LED «MODE»

The built in LED indicates the following BDI states:


MODE LED	BDI STATES
OFF	The BDI is ready for use, the firmware is already loaded.
ON	The output voltage from the power supply is too low.
BLINK	The BDI «loader mode» is active (an invalid firmware is loaded or loading firmware is active).

2.4 Connecting the BDI3000 to Host

2.4.1 Serial line communication


Serial line communication is only used for the initial configuration of the bdiGDB system.

The host is connected to the BDI through the serial interface (COM1...COM4). The communication cable (included) between BDI and Host is a serial cable. There is the same connector pinout for the BDI and for the Host side (Refer to Figure below).

2.4.2 Ethernet communication

The BDI3000 has a built-in 10/100 BASE-T Ethernet interface (see figure below). Connect an UTP (Unshielded Twisted Pair) cable to the BD3000. Contact your network administrator if you have questions about the network.

The following explains the meanings of the built-in LED lights:

LED	Function	Description
LED 1 (green)	Link / Activity	When this LED light is ON, data link is successful between the UTP port of the BDI3000 and the hub to which it is connected. The LED blinks when the BDI3000 is receiving or transmitting data.
LED 2 (amber)	Speed	When this LED light is ON, 100Mb/s mode is selected (default). When this LED light is OFF, 10Mb/s mode is selected

2.5 Installation of the Configuration Software

On the enclosed diskette you will find the BDI configuration software and the firmware required for the BDI3000. For Windows users there is also a TFTP server included.

The following files are on the diskette.

b30mcfgd.exe	Windows Configuration program
b30mcfgd.xxx	Firmware for the BDI3000
tftpsrv.exe	TFTP server for Windows (WIN32 console application)
*.cfg	Configuration files
*.def	Register definition files
bdisetup.zip	ZIP Archive with the Setup Tool sources for Linux / UNIX hosts.

Overview of an installation / configuration process:

- Create a new directory on your hard disk
- Copy the entire contents of the enclosed diskette into this directory
- Linux only: extract the setup tool sources and build the setup tool
- Use the setup tool or Telnet (default IP) to load/update the BDI firmware **Note**: A new BDI has no firmware loaded.
- Use the setup tool or Telnet (default IP) to load the initial configuration parameters
 - IP address of the BDI.
 - IP address of the host with the configuration file.
 - Name of the configuration file. This file is accessed via TFTP.
 - Optional network parameters (subnet mask, default gateway).

Activating BOOTP:

The BDI can get the network configuration and the name of the configuration file also via BOOTP. For this simple enter 0.0.0.0 as the BDI's IP address (see following chapters). If present, the subnet mask and the default gateway (router) is taken from the BOOTP vendor-specific field as defined in RFC 1533.

With the Linux setup tool, simply use the default parameters for the -c option: $[root@LINUX_1 bdisetup] \# ./bdisetup -c -p/dev/ttyS0 -b57$

The MAC address is derived from the serial number as follows: MAC: 00-0C-01-xx-xx-xx , replace the xx-xx-xx with the 6 left digits of the serial number Example: SN# 33123407 ==>> 00-0C-01-33-12-34

Default IP: 192.168.53.72

Before the BDI is configured the first time, it has a default IP of 192.168.53.72 that allows an initial configuration via Ethernet (Telnet or Setup Tools). If your host is not able to connect to this default IP, then the initial configuration has to be done via the serial connection.

bdiGDB for GNU Debugger, BDI3000 (ColdFire)

2.5.1 Configuration with a Linux / Unix host

The firmware update and the initial configuration of the BDI3000 is done with a command line utility. In the ZIP Archive bdisetup.zip are all sources to build this utility. More information about this utility can be found at the top in the bdisetup.c source file. There is also a make file included. Starting the tool without any parameter displays information about the syntax and parameters.

To avoid data line conflicts, the BDI3000 must be disconnected from the target system while programming the firmware for an other target CPU family.

Following the steps to bring-up a new BDI3000:

1. Build the setup tool:

The setup tool is delivered only as source files. This allows to build the tool on any Linux / Unix host. To build the tool, simply start the make utility.

[root@LINUX_1 bdisetup]# make cc -O2 -c -o bdisetup.o bdisetup.c cc -O2 -c -o bdicnf.o bdicnf.c cc -O2 -c -o bdidll.o bdidll.c cc -s bdisetup.o bdicnf.o bdidll.o -o bdisetup

2. Check the serial connection to the BDI:

With "bdisetup -v" you may check the serial connection to the BDI. The BDI will respond with information about the current loaded firmware and network configuration.

Note: Login as root, otherwise you probably have no access to the serial port.

\$./bdisetup -v -p/dev/ttyS0 -b115 BDI Type : BDI3000 (SN: 30000154) Loader : V1.00 Firmware : unknown MAC : ff-ff-ff-ff-ff IP Addr : 255.255.255.255 Subnet : 255.255.255.255 Gateway : 255.255.255.255 Host IP : 255.255.255 Config : ÿÿÿÿÿy......

3. Load/Update the BDI firmware:

With "bdisetup -u" the firmware is programmed into the BDI3000 flash memory. This configures the BDI for the target you are using. Based on the parameters -a and -t, the tool selects the correct firmware file. If the firmware file is in the same directory as the setup tool, there is no need to enter a -d parameter.

\$./bdisetup -u -p/dev/ttyS0 -b115 -aGDB -tMCF Connecting to BDI loader Programming firmware with ./b30mcfgd.100 Erasing firmware flash Erasing firmware flash passed Programming firmware flash Programming firmware flash passed

4. Transmit the initial configuration parameters:

With "bdisetup -c" the configuration parameters are written to the flash memory within the BDI. The following parameters are used to configure the BDI:

BDI IP Address	The IP address for the BDI3000. Ask your network administrator for as- signing an IP address to this BDI3000. Every BDI3000 in your network needs a different IP address.
Subnet Mask	The subnet mask of the network where the BDI is connected to. A subnet mask of 255.255.255.255 disables the gateway feature. Ask your network administrator for the correct subnet mask. If the BDI and the host are in the same subnet, it is not necessary to enter a subnet mask.
Default Gateway	Enter the IP address of the default gateway. Ask your network administra- tor for the correct gateway IP address. If the gateway feature is disabled, you may enter 255.255.255.255 or any other value.
Config - Host IP Address	Enter the IP address of the host with the configuration file. The configura- tion file is automatically read by the BDI3000 after every start-up.
Configuration file	Enter the full path and name of the configuration file. This file is read via TFTP. Keep in mind that TFTP has it's own root directory (usual /tftpboot). You can simply copy the configuration file to this directory and the use the file name without any path. For more information about TFTP use "man tftpd".

\$./bdisetup -c -p/dev/ttyS0 -b115 \
> -i151.120.25.102 \
> -h151.120.25.112 \
> -fe:/bdi3000/mytarget.cfg
Connecting to BDI loader
Writing network configuration
Configuration passed

5. Check configuration and exit loader mode:

The BDI is in loader mode when there is no valid firmware loaded or you connect to it with the setup tool. While in loader mode, the Mode LED is blinking. The BDI will not respond to network requests while in loader mode. To exit loader mode, the "bdisetup -v -s" can be used. You may also power-off the BDI, wait some time (1min.) and power-on it again to exit loader mode.

\$./bdisetup -v -p/dev/ttyS0 -b115 -s
BDI Type : BDI3000 (SN: 30000154)
Loader : V1.00
Firmware : V1.00 bdiGDB for ColdFire
MAC : 00-0c-01-30-00-01
IP Addr : 151.120.25.102
Subnet : 255.255.255.255
Gateway : 255.255.255
Gateway : 255.255.255
Host IP : 151.120.25.112
Config : /bdi3000/mytarget.cfg

The Mode LED should go off, and you can try to connect to the BDI via Telnet.

\$ telnet 151.120.25.102

2.5.2 Configuration with a Windows host

First make sure that the BDI is properly connected (see Chapter 2.1 to 2.4).

To avoid data line conflicts, the BDI3000 must be disconnected from the target system while programming the firmware for an other target CPU family.

BDI3000 Update/Setup	x	
Connect BDI3000 Loader Channel Port COM1 Speed 115200	SN: 30000154 MAC: 000C01300001 Version: 1.00 Connect	
BD13000 Firmware		
Loaded Version: 1.00 Newest Version: 1.00		
Current Erase	Update	
- Configuration		
BDI IP Address	151.120.25.102	
Subnet Mask	255.255.255.0	
Default Gateway	255.255.255.255	
Config - Host IP Address	151.120.25.112	
Configuration file /bdi3000/mytarget.cfg		
Cancel Ok	Transmit	
Writing setup data passed		

dialog box «BDI3000 Update/Setup»

Before you can use the BDI3000 together with the GNU debugger, you must store the initial configuration parameters in the BDI3000 flash memory. The following options allow you to do this:

Port	Select the communication port where the BDI3000 is connected during this setup session. If you select Network, make sure the Loader is already active (Mode LED blinking). If there is already a firmware loaded and run- ning, use the Telnet command "boot loader" to activate Loader Mode.
Speed	Select the baudrate used to communicate with the BDI3000 loader during this setup session.
Connect	Click on this button to establish a connection with the BDI3000 loader. Once connected, the BDI3000 remains in loader mode until it is restarted or this dialog box is closed.
Current	Press this button to read back the current loaded BDI3000 firmware ver- sion. The current firmware version will be displayed.

Erase	Press this button to erase the current loaded firmware.
Update	This button is only active if there is a newer firmware version present in the execution directory of the bdiGDB setup software. Press this button to write the new firmware into the BDI3000 flash memory.
BDI IP Address	Enter the IP address for the BDI3000. Use the following format: xxx.xxx.xxx e.g.151.120.25.101 Ask your network administrator for assigning an IP address to this BDI3000. Every BDI3000 in your network needs a different IP address.
Subnet Mask	Enter the subnet mask of the network where the BDI is connected to. Use the following format: xxx.xxx.xxxe.g.255.255.255.0 A subnet mask of 255.255.255.255 disables the gateway feature. Ask your network administrator for the correct subnet mask.
Default Gateway	Enter the IP address of the default gateway. Ask your network administra- tor for the correct gateway IP address. If the gateway feature is disabled, you may enter 255.255.255.255 or any other value.
Config - Host IP Address	Enter the IP address of the host with the configuration file. The configura- tion file is automatically read by the BDI3000 after every start-up.
Configuration file	Enter the full path and name of the configuration file. This name is trans- mitted to the TFTP server when reading the configuration file.
Transmit	Click on this button to store the configuration in the BDI3000 flash memory.

Note:

Using this setup tool via the Network channel is only possible if the BDI3000 is already in Loader mode (Mode LED blinking). To force Loader mode, enter "boot loader" at the Telnet. The setup tool tries first to establish a connection to the Loader via the IP address present in the "BDI IP Address" entry field. If there is no connection established after a time-out, it tries to connect to the default IP (192.168.53.72).

biggs for GNU Debugger, BDI3000 (ColdFire)

2.5.3 Configuration via Telnet / TFTP

The firmware update and the initial configuration of the BDI3000 can also be done interactively via a Telnet connection and a running TFTP server on the host with the firmware file. In cases where it is not possible to connect to the default IP, the initial setup has to be done via a serial connection.

To avoid data line conflicts, the BDI3000 must be disconnected from the target system while programming the firmware for an other target CPU family.

Following the steps to bring-up a new BDI3000 or updating the firmware. Connect to the BDI Loader via Telnet. If a firmware is already running enter "boot loader" and reconnect via Telnet.

\$ telnet 192.168.53.72
or
\$ telnet <your BDI IP address>

Update the network parameters so it matches your needs:

LDR>network BDI MAC : 00-0c-01-30-00-01 BDI IP : 192.168.53.72 BDI Subnet : 255.255.255.0 BDI Gateway : 255.255.255.255 Config IP : 255.255.255.255 Config File : LDR>netip 151.120.25.102 LDR>nethost 151.120.25.112 LDR>netfile /bdi3000/mytarget.cfg LDR>network BDI MAC : 00-0c-01-30-00-01 BDI IP : 151.120.25.102 BDI Subnet : 255.255.255.0 BDI Gateway : 255.255.255.255 Config IP : 151.120.25.112 Config File : /bdi3000/mytarget.cfg LDR>network save saving network configuration ... passed BDI MAC : 00-0c-01-30-00-01 BDI IP : 151.120.25.102

BDI IP : 151.120.25.102 BDI Subnet : 255.255.255.0 BDI Gateway : 255.255.255.255 Config IP : 151.120.25.112 Config File : /bdi3000/mytarget.cfg

In case the subnet has changed, reboot before trying to load the firmware

LDR>boot loader

for GNU Debugger, BDI3000 (ColdFire)

Connect again via Telnet and program the firmware into the BDI flash:

\$ telnet 151.120.25.102

I.di

LDR>info BDI Firmware: not loaded BDI CPLD ID : 01285043 BDI CPLD UES: ffffffff BDI MAC : 00-0c-01-30-00-01 BDI IP : 151.120.25.102 BDI Subnet : 255.255.255.0 BDI Gateway : 255.255.255 Config IP : 151.120.25.112 Config File : /bdi3000/mytarget.cfg

LDR>fwload e:/temp/b30mcfgd.100 erasing firmware flash ... passed programming firmware flash ... passed

LDR>info BDI Firmware: 26 / 1.00 BDI CPLD ID : 01285043 BDI CPLD UES: ffffffff BDI MAC : 00-0c-01-30-00-01 BDI IP : 151.120.25.102 BDI Subnet : 255.255.255.0 BDI Gateway : 255.255.255.0 BDI Gateway : 255.255.255.255 Config IP : 151.120.25.112 Config File : /bdi3000/mytarget.cfg LDR>

To boot now into the firmware use:

LDR>boot

The Mode LED should go off, and you can try to connect to the BDI again via Telnet.

telnet 151.120.25.102

2.6 Testing the BDI3000 to host connection

After the initial setup is done, you can test the communication between the host and the BDI3000. There is no need for a target configuration file and no TFTP server is needed on the host.

- If not already done, connect the BDI3000 system to the network.
- Power-up the BDI3000.
- Start a Telnet client on the host and connect to the BDI3000 (the IP address you entered during initial configuration).
- If everything is okay, a sign on message like «BDI Debugger for Embedded PowerPC» and a list of the available commands should be displayed in the Telnet window.

2.7 TFTP server for Windows

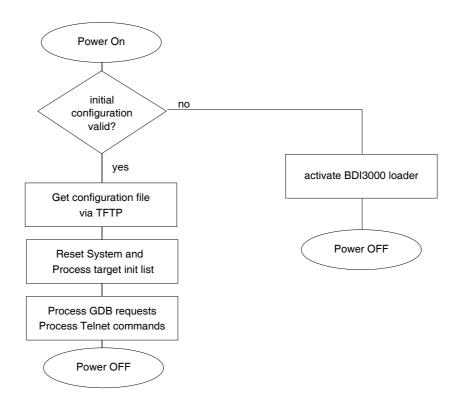
The bdiGDB system uses TFTP to access the configuration file and to load the application program. Because there is no TFTP server bundled with Windows, Abatron provides a TFTP server application **tftpsrv.exe**. This WIN32 console application runs as normal user application (not as a system service).

Command line syntax: tftpsrv [p] [w] [dRootDirectory]

Without any parameter, the server starts in read-only mode. This means, only read access request from the client are granted. This is the normal working mode. The bdiGDB system needs only read access to the configuration and program files.

The parameter [p] enables protocol output to the console window. Try it. The parameter [w] enables write accesses to the host file system. The parameter [d] allows to define a root directory.

tftpsrv p	Starts the TFTP server and enables protocol output
tftpsrv p w	Starts the TFTP server, enables protocol output and write accesses are allowed.
tftpsrv dC:\tftp\	Starts the TFTP server and allows only access to files in C:\tftp and its subdirectories. As file name, use relative names. For example "bdi\mpc750.cfg" accesses "C:\tftp\bdi\mpc750.cfg"


You may enter the TFTP server into the Startup group so the server is started every time you login.

3 Using bdiGDB

3.1 Principle of operation

The firmware within the BDI handles the GDB request and accesses the target memory or registers via the BDM interface. There is no need for any debug software on the target system. After loading the code via TFTP debugging can begin at the very first assembler statement.

Whenever the BDI system is powered-up the following sequence starts:

Breakpoints:

There are two breakpoint modes supported. One of them (SOFT) is implemented by replacing application code with a HALT instruction. The other (HARD) uses the built in breakpoint logic. If HARD is used, only up to 1 (4 for V4 cores) breakpoints can be active at the same time. The following example selects SOFT as the breakpoint mode:

BREAKMODE SOFT ;<AGENT> SOFT or HARD, HARD uses hardware breakpoints

All the time the application is suspended (i.e. caused by a breakpoint) the target processor remains freezed.

Target Exceptions:

If enabled, the BDI will catch all unhandled exceptions. This is only possible if the vector table is writable. At vector 0 the BDI writes a HALT, RTE instruction sequence and lets all other vectors point to this short exception handler. The BDI reads back the VBR after processing the initilaisation list in order to get the base address of the vector table.

[INIT] WCREG 0x801 0x0000000 ;set vector base

[TARGET] VECTOR CATCH

;enable vector catching

3.2 Configuration File

The configuration file is automatically read by the BDI after every power on. The syntax of this file is as follows:

```
; comment
[part name]
identifier parameter1 parameter2 ..... parameterN ; comment
identifier parameter1 parameter2 ..... parameterN
.....
[part name]
identifier parameter1 parameter2 ..... parameterN
identifier parameter1 parameter2 ..... parameterN
.....
etc.
```

Numeric parameters can be entered as decimal (e.g. 700) or as hexadecimal (0x80000).

3.2.1 Part [INIT]

The part [INIT] defines a list of commands which should be executed every time the target comes out of reset. The commands are used to get the target ready for loading the program file. Commands in this section are processed in order from top to bottom.

WDREG register value	Write value to the selected data register. register the register number 0 7 value the value to write into the register Example: WDREG 0 5
WAREG register value	Write value to the selected address register. register the register number 0 7 value the value to write into the register Example: WAREG 0 5
WCREG register value	Write value to the selected control register.registerthe register number(e.g. 0x801 for VBR)valuethe value to write into the registerExample: WCREG 0xC0F 0x10000001 ;MBAR
WM8 address value	Write a byte (8bit) to the selected memory place.addressthe memory addressvaluethe value to write to the target memoryExample: WM8 0xFFFFFA21 0x04 ; SYPCR: watchdog disable
WM16 address value	Write a half word (16bit) to the selected memory place.addressthe memory addressvaluethe value to write to the target memoryExample: WM160x100001000x8230;DCR

WM32 address value	Write a word (32bit) to the selected memory place.addressthe memory addressvaluethe value to write to the target memoryExample: WM320x1000010C0x003C0001;DCMR0
MMAP start end	Because a memory access to an invalid memory space via BDM can lead to a deadlock, this entry can be used to define up to 32 valid memory rang- es. If at least one memory range is defined, the BDI checks against this range(s) and avoids accessing of not mapped memory ranges. start the start address of a valid memory range end the end address of this memory range Example: MMAP 0xFFE00000 0xFFFFFFFF ;Boot ROM
DELAY value	Delay for the selected time. A delay may be necessary to let the clock PLL lock again after a new clock rate is selected. value the delay time in milliseconds (130000) Example: DELAY 500 ; delay for 0.5 seconds
WTLB tag data	Only V4e cores: Adds an entry to the TLB array(s). For a detailed description of the tag/data value look at the V4e MMU description. The first WTLBtagvirtual page number, ASID, shared and valid bitdatareal page number, size, cache mode and SRWXL bitsExample:WTLB 0x0000001 0x1001025C ;SRAM 8k CB RWX

MMU setup example:

NOP ;Se	et Memory Map
WCREG 0x0C0F 0x	10000001; MBAR : map internal REGS to 0x10000000
WCREG 0x0008 0x1	11000001 ;MMUBAR : map MMU registers to 0x11000000
WCREG 0x0C04 0x	20000035 ;RAMBAR0: map internal SRAM to 0x20000000
WCREG 0x0C05 0x	20001035 ;RAMBAR1: map internal SRAM to 0x20001000
NOP ;M	IMU : Map internal registers
WTLB 0x10000001 0x	x10000298 ;0x10000000 -> 0x10000000, 8k, NP, RW-
WTLB 0x10002001 0x	x10020298 ;0x10002000 -> 0x10002000, 8k, NP, RW-
WTLB 0x10004001 0x	x10040298 ;0x10004000 -> 0x10004000, 8k, NP, RW-
WTLB 0x10006001 0x	x10060298 ;0x10006000 -> 0x10006000, 8k, NP, RW-
WTLB 0x10008001 0x	x10080298 ;0x10008000 -> 0x10008000, 8k, NP, RW-
WTLB 0x1000A001 0	0x100A0298 ;0x1000A000 -> 0x1000A000, 8k, NP, RW-
WTLB 0x1000C001 0	x100C0298 ;0x1000C000 -> 0x1000C000, 8k, NP, RW-
WTLB 0x1000E001 02	x100E0298 ;0x1000E000 -> 0x1000E000, 8k, NP, RW-
NOP ;M	IMU : Map 32k System RAM to 0x00000000
WTLB 0x0000001 0x	x1001025C ;0x00000000 -> 0x10010000, 8k, CB, RWX
WTLB 0x00002001 0x	x1001225C ;0x00002000 -> 0x10012000, 8k, CB, RWX
WTLB 0x00004001 0x	x1001425C ;0x00004000 -> 0x10014000, 8k, CB, RWX
WTLB 0x00006001 0x	x1001625C ;0x00008000 -> 0x10016000, 8k, CB, RWX
WM32 0x11000000 0x	x00000001 ;MMUCR: enable MMU

3.2.2 Part [TARGET]

The part [TARGET] defines some target specific values.

	5 1	
CPUTYPE type	This value gives	the BDI information about the connected CPU.
	type	MCF5202, MCF5203
	7 F ²	MCF5207, MCF5208, MCF5214, MCF5216,
		MCF5249, SCF5250, MCF5251, MCF5253
		MCF5230, MCF5232, MCF5233, MCF5234, MCF5235
		MCF5270, MCF5271, MCF5274, MCF5275
		MCF5280, MCF5281, MCF5282
		MCF5210, MCF5211, MCF5212, MCF5213,
		MCF5221, MCF5222, MCF5223, MCF5225, MCF5227
		MCF5307, MCF5301
		MCF5327, MCF5328, MCF5329, MCF5372, MCF5373
		MCF5407, MCF5470, MCF5480, MCF5441, MCF5445
	Example:	CPUTYPE MCF5282
BDIMODE mode param	•	selects the BDI debugging mode. The following modes are
	supported:	
	LOADONLY	Loads and starts the application core. No debugging via BDM.
	AGENT	The debug agent runs within the BDI. There is no need
		for any debug software on the target. This mode accepts
		a second parameter. If RUN is entered as a second pa-
		rameter, the loaded application will be started immedi-
		ately, otherwise only the PC is set and BDI waits for
		GDB requests.
	Example:	BDIMODE AGENT RUN
CPUCLOCK value		o know how fast the target CPU runs after processing the
		I communication speed is selected based on this value. If s a clock rate that is higher than the real clock, BDM com-
		fail. When defining a clock rate slower than possible, BDM
		still works but not as fast as possible.
		, enter the PSTCLK value.
	value	the CPU (PSTCLK) clock in hertz
	Example:	CPUCLOCK 25000000 ; CPU clock is 25.0MHz
	Example.	CFUCLOCK 25000000, CFU Clock is 25.010112
STARTUP mode [runtime	e]This parameter :	selects the target startup mode. The following modes are
	supported:	
	RESET	This default mode forces the target to debug mode im-
		mediately out of reset. No code is executed after reset.
	STOP	In this mode, the BDI lets the target execute code for
		"runtime" milliseconds after reset. This mode is useful
		when monitor code should initialize the target system.
	RUN	After reset, the target executes code until stopped by the
	-	Telnet "halt" command.
	Example:	STARTUP STOP 3000 ; let the CPU run for 3 seconds

BREAKMODE mode [NO	DUHE] This parameter defines how breakpoints are implemented. The cur rent mode can also be changed via the Telnet interface. By default the BD sets the CSR[UHE] bit so a halt instruction in user-mode will be handled by the BDI. If the option NOUHE is present, the BDI will not set this bit and a halt in user mode will cause an invalid instruction exception that can be handled by an application debugger resident in the target system. SOFT This is the normal mode. Breakpoints are implemented by replacing code with a TRAP instruction.			
	HARD	In this mode, the breakpoint hardware is used. Only 1 (4) breakpoints at a time are supported.		
	Example:	BREAKMODE HARD ; enable use of break hardware		
VECTOR CATCH		s present, the BDI catches all unhandled exceptions. ons is only possible if the vector table is writable. VECTOR CATCH ; catch unhandled exception		
SIO port [baudrate]	connector. The p host communicat Telnet port (23). you should see t normal Telnet co	present, a TCP/IP channel is routed to the BDI's RS232 ort parameter defines the TCP port used for this BDI to tion. You may choose any port except 0 and the default On the host, open a Telnet session using this port. Now he UART output in this Telnet session. You can use the onnection to the BDI in parallel, they work completely in- input to the UART is implemented. The TCP/IP port used for the host communication. The BDI supports 2400 115200 baud SIO 7 9600 ;TCP port for virtual IO		
WAKEUP time	between releasing target. This init list to the processors	nit list allows to define a delay time (in ms) the BDI inserts ing the RESET line and starting communicating with the st entry may be necessary if RESET is delayed on its way is reset pin. If not defined a delay of 1 ms is used. the delay time in milliseconds (10 60'000) WAKEUP 3000 ; insert 3sec wake-up time		
RESET time		init list allows to define the time (in ms) the BDI asserts al. If not defined, reset is asserted for 1 ms. the reset time in milliseconds (10 60'000) RESET 500 ; assert RESET for 500 ms		

3.2.3 Part [HOST]

The part [HOST] defines some host specific values.

IP ipaddress	The IP address ipaddress Example:	of the host. the IP address in the form xxx.xxx.xxx.xxx IP 151.120.25.100			
FILE filename	command. This	e of the file that is loaded into RAM using the Telnet 'load' name is used to access the file via TFTP. If the filename his \$ is replace with the path of the configuration file name. the filename including the full path or \$ for relative path. FILE F:\gnu\demo\mcf\test.elf FILE \$test.elf			
FORMAT format [offset]	The format of the program file and an optional load address offset. rently binary, S-record, a.out, ELF and COFF formats are supported. I code is already stored in ROM on the target, select ROM as the for The optional parameter "offset" is added to any load address read from image file. format Example: FORMAT COFF FORMAT COFF 0x10000				
LOAD mode	this parameters defines if the code is loaded automatically t. AUTO, MANUAL				
	mode Example:	LOAD MANUAL			
START address	the core is not in is not defined an	ere to start the program file. If this value is not defined and ROM, the address is taken from the code file. If this value ad the core is already in ROM, the PC will not be set before gram file. This means, the program starts at the normal re- 0100). the address where to start the program file START 0x1000			
DEBUGPORT port [REC					
	The TCP port G eter is present, a	DB uses to access the target. If the RECONNECT param- an open TCP/IP connection (Telnet/GDB) will be closed if oct request from the same host (same IP address). the TCP port number (default = 2001) DEBUGPORT 2001			
PROMPT string	•	es a new Telnet prompt. The current prompt can also be Telnet interface. PROMPT 5307>			
DUMP filename	The default file r filename Example:	name used for the Telnet DUMP command. the filename including the full path DUMP dump.bin			

3.2.4 Part [FLASH]

ldi

The Telnet interface supports programming and erasing of flash memories. The bdiGDB system has to know which type of flash is used, how the chip(s) are connected to the CPU and which sectors to erase in case the ERASE command is entered without any parameter

CHIPTYPE type	This parameter or rect programmin	defines the type of flash used. It is used to select the cor- g algorithm.
	format Example:	AM29F, AM29BX8, AM29BX16, I28BX8, I28BX16, AT49, AT49X8, AT49X16, STRATAX8, STRATAX16, MIRROR, MIRRORX8, MIRRORX16, S29M64X8, S29M32X16, AM29DX16, AM29DX32 CHIPTYPE AM29F
CHIPSIZE size		lash chip in bytes (e.g. AM29F010 = 0x20000). This value ate the starting address of the current flash memory bank. the size of one flash chip in bytes CHIPSIZE 0x80000
BUSWIDTH width	ter the width of the information about	of the memory bus that leads to the flash chips. Do not en- the flash chip itself. The parameter CHIPTYPE carries the state the number of data lines connected to one flash chip. ther 16 if you are using two AM29F010 to build a 16bit flash
	with Example:	the width of the flash memory bus in bits (8 16 32) BUSWIDTH 16
FILE filename	'prog' command. name starts with	e of the file that is programmed into flash using the Telnet This name is used to access the file via TFTP. If the file- a \$, this \$ is replace with the path of the configuration file e may be overridden interactively at the Telnet interface. the filename including the full path or \$ for relative path. FILE F:\gnu\mcf\bootrom.hex FILE \$bootrom.hex
FORMAT format [offset]		e file and an optional address offset. The optional param- dded to any load address read from the program file. SREC, BIN, AOUT, ELF or COFF FORMAT SREC FORMAT ELF 0x10000
WORKSPACE address	that runs out of F cessed within the	
	address	the address of the RAM area
	Example:	WORKSPACE 0x0000000

ERASE addr [increment count] [mode [wait]]

The flash memory may be individually erased or unlocked via the Telnet interface. In order to make erasing of multiple flash sectors easier, you can enter an erase list. All entries in the erase list will be processed if you enter ERASE at the Telnet prompt without any parameter. This list is also used if you enter UNLOCK at the Telnet without any parameters. With the "increment" and "count" option you can erase multiple equal sized sectors with one entry in the erase list.

address	Address of the flash sector, block or chip to erase
increment	If present, the address offset to the next flash sector
count	If present, the number of equal sized sectors to erase
mode	BLOCK, CHIP, UNLOCK
	Without this optional parameter, the BDI executes a sec- tor erase. If supported by the chip, you can also specify a block or chip erase. If UNLOCK is defined, this entry is also part of the unlock list. This unlock list is processed if the Telnet UNLOCK command is entered without any parameters.
	Note: Chip erase does not work for large chips because the BDI time-outs after 3 minutes. Use block erase.
wait	The wait time in ms is only used for the unlock mode. Af- ter starting the flash unlock, the BDI waits until it pro- cesses the next entry.
Example:	ERASE 0xff040000 ;erase sector 4 of flash
	ERASE 0xff060000 ;erase sector 6 of flash
	ERASE 0xff000000 CHIP ;erase whole chip(s) ERASE 0xff010000 UNLOCK 100 ;unlock, wait 100ms ERASE 0xff000000 0x10000 7 ; erase 7 sectors

Example for the MCF5307 evaluation board flash memory:

[FLASH]

WORKSPACE 0x00800000 ;workspace in target RAM for fast programming algorithm CHIPTYPE AM29F ;Flash type (AM29F | AM29BX8 | AM29BX16 | I28BX8 | I28BX16) CHIPSIZE 0x80000; The size of one flash chip in bytes (e.g. AM29F010 = 0x20000) BUSWIDTH 16 ;The width of the flash memory bus in bits (8 | 16 | 32)FILE D:\abatron\bdi360\ColdFire\pro\sbc5307.sss ERASE 0xFFE00000 ;erase sector 0 of flash ERASE 0xFFE20000 ;erase sector 1 of flash ERASE 0xFFE40000 ;erase sector 1 of flash ERASE 0xFFE60000 ;erase sector 1 of flash

the above erase list maybe replaces with:

ERASE 0xFFE00000 0x20000 4 ;erase 4 sectors

biggs for GNU Debugger, BDI3000 (ColdFire)

Supported Flash Memories:

There are currently 3 standard flash algorithm supported. The AMD, Intel and Atmel AT49 algorithm. Almost all currently available flash memories can be programmed with one of this algorithm. The flash type selects the appropriate algorithm and gives additional information about the used flash.

For 8bit only flash:	AM29F (MIRROR), I28BX8, AT49
For 8/16 bit flash in 8bit mode:	AM29BX8 (MIRRORX8), I28BX8 (STRATAX8), AT49X8
For 8/16 bit flash in 16bit mode:	AM29BX16 (MIRRORX16), I28BX16 (STRATAX16), AT49X16
For 16bit only flash:	AM29BX16, I28BX16, AT49X16
For 16/32 bit flash in 16bit mode:	AM29DX16
For 16/32 bit flash in 32bit mode:	AM29DX32

The AMD and AT49 algorithm are almost the same. The only difference is, that the AT49 algorithm does not check for the AMD status bit 5 (Exceeded Timing Limits).

Only the AMD and AT49 algorithm support chip erase. Block erase is only supported with the AT49 algorithm. If the algorithm does not support the selected mode, sector erase is performed. If the chip does not support the selected mode, erasing will fail. The erase command sequence is different only in the 6th write cycle. Depending on the selected mode, the following data is written in this cycle (see also flash data sheets): 0x10 for chip erase, 0x30 for sector erase, 0x50 for block erase.

To speed up programming of Intel Strata Flash and AMD MirrorBit Flash, an additional algorithm is implemented that makes use of the write buffer. This algorithm needs a workspace, otherwise the standard Intel/AMD algorithm is used.

Flash	x 8	x 16	x 32	Chipsize
Am29F010	AM29F	-	-	0x020000
Am29F800B	AM29BX8	AM29BX16	-	0x100000
Am29DL323C	AM29BX8	AM29BX16	-	0x400000
Am29PDL128G	-	AM29DX16	AM29DX32	0x01000000
Intel 28F032B3	128BX8	-	-	0x400000
Intel 28F640J3A	STRATAX8	STRATAX16	-	0x800000
Intel 28F320C3	-	I28BX16	-	0x400000
AT49BV040	AT49	-	-	0x080000
AT49BV1614	AT49X8	AT49X16	-	0x200000
M58BW016BT	-	-	M58X32	0x200000
SST39VF160	-	AT49X16	-	0x200000
Am29LV320M	MIRRORX8	MIRRORX16	-	0x400000

The following table shows some examples:

bdiGDB for GNU Debugger, BDI3000 (ColdFire)

Note:

Some Intel flash chips (e.g. 28F800C3, 28F160C3, 28F320C3) power-up with all blocks in locked state. In order to erase/program those flash chips, use the init list to unlock the appropriate blocks:

WM16	0xFFF00000	0x0060	unlock block 0
WM16	0xFFF00000	0x00D0	
WM16	0xFFF10000	0x0060	unlock block 1
WM16	0xFFF10000	0x00D0	
WM16	 0xFFF00000	0xFFFF	select read mode

or use the Telnet "unlock" command:

UNLOCK [<addr> [<delay>]]

addrThis is the address of the sector (block) to unlockdelayA delay time in milliseconds the BDI waits after sending the unlock command to the flash. For example, clearing all lock-bits of an Intel J3 Strata
flash takes up to 0.7 seconds.

If "unlock" is used without any parameter, all sectors in the erase list with the UNLOCK option are processed.

To clear all lock-bits of an Intel J3 Strata flash use for example:

BDI> unlock 0xFF000000 1000

To erase or unlock multiple, continuous flash sectors (blocks) of the same size, the following Telnet commands can be used:

ERASE <addr> <step> <count> UNLOCK <addr> <step> <count>

addr	This is the address of the first sector to erase or unlock.
step	This value is added to the last used address in order to get to the next sec- tor. In other words, this is the size of one sector in bytes.
count	The number of sectors to erase or unlock.

The following example unlocks all 256 sectors of an Intel Strata flash (28F256K3) that is mapped to 0x00000000. In case there are two flash chips to get a 32bit system, double the "step" parameter.

BDI> unlock 0x0000000 0x20000 256

biggs for GNU Debugger, BDI3000 (ColdFire)

MCF52xxx internal flash (CFM):

To erase and program the ColdFire Flash Module (CFM) you have to access it via the backdoor addresses (IPSBAR + 0x04000000). This backdoor address has to be used for erase and program commands. Following an example how to setup for CFM programming when IPSBAR is at the default address off 0x40000000.

[FLASH]WORKSPACE0x20000000 ;workspace in target SRAM for fast programming algorithmCHIPTYPECFM;MCF52xxx internal flashBUSWIDTH32;The width of the flash memory bus in bits (8 | 16 | 32)FILEE:\cygwin\home\bdidemo\coldfire\evb5282_cmf.binFORMATBIN 0x44000000ERASE0x44000000 MASSERASE0x44040000 MASS

Before you can erase/program the CFM, the CFM Clock Divider needs to be setup via an init list entry. Check the MCF52xxx user's manual about how to setup the CFMCLKD.

WM8 0x401D0002 0x54 ;CFMCLKD : Flash clock divider for 64MHz

for GNU Debugger, BDI3000 (ColdFire)

3.2.5 Part [REGS]

file.

In order to make it easier to access target registers via the Telnet interface, the BDI can read in a register definition file. In this file, the user defines a name for the register and how the BDI should access it (e.g. as memory mapped, memory mapped with offset, ...). The name of the register definition file and information for different registers type has to be defined in the configuration file. The register name, type, address/offset/number and size are defined in a separate register definition file. This way, you can create one register definition file for the MCF5307 that can be used for all possible positions of the internal memory map. You only have to change one entry in the configuration

An entry in the register definition file has the following syntax:

name	type	addr	size				
name				The name of the register (max. 12 characters)			
type				The register type DREG AREG CREG MM DMM1DMM4 IMM1IMM4 CMM1CMM4	Data register Address register Control register Absolute direct memory mapped register Relative direct memory mapped register Indirect memory mapped register Control register based memory mapped register		
addr				The address, offse	t or number of the register		
size				The size (8, 16, 32) of the register		
The fo	llowing	entries	are	supported in the [BI	EGS] part of the configuration file:		
	-		uic				
FILE filename			The name of the register definition file. This name is used to access the file via TFTP. The file is loaded once during BDI startup.				
					ne filename including the full path		
				Example: F	ILE C:\bdi\regs\mcf5485.def		
DMMn	ı base			This defines the base address of direct memory mapped registers. This base address is added to the individual offset of the register. base the base address Example: DMM1 0x01000			
IMMn	Mn addr data This defines the addresses of the memory mapped address and oristers of indirect memory mapped registers. The address of a IMN ter is first written to "addr" and then the register value is acce "data" as address. addr the address of the Address register data the address of the Data register Example: DMM1 0x02200000		emory mapped registers. The address of a IMMn regis- to "addr" and then the register value is access using the address of the Address register the address of the Data register				

CMMn addr mask	This defines the control register that holds the base address of control reg- ister based memory mapped registers. The base address is added to the individual offset of the register.		
	addr	the address of the Control register	
	mask	the mask applied to the control register value before it is used as base address.	
	Example:	CMM2 0x008 0xFFFF0000 ; MMUBAR	

Note:

The following register names are already predefined: d0 .. d7, a0 .. a7, fp, sp, vbr, sr, pc, cacr, acr0, acr1, rambar, rombar, mbar

Example for a register definition (MCF5485):

Entry in the configuration file:

[REGS]			
CMM1	0xC0F	0xfffc0000	; MBAR
CMM2	0x008	0xffff0000	; MMUBAR
FILE	\$reg5485	5.def	

The register definition file:

;name	type		size		
;					
;	1.0.1.				
; Additional Contro	ol Register	•			
;	an E a	0.000	~~		
cacr	CREG		32		
asid	CREG	0x003	32		
acr0	CREG	0x004	32		
;					
; CMM2 must point to MMUBAR					
;					
mmucr	CMM2	0x000	32		
mmuor	CMM2	0x004	32		
;					
; CMM1 must point to MBAR					
;					
; System Integration Unit (SIU)					
sdramds1	CMM1	0x004	32		
sbcr	CMM1	0x010	32		
cs0cfg01	CMM1	0x020	32		
-					

.....

Now the defined registers can be accessed by name via the Telnet interface:

BDI> rd mmucr BDI> rm csar0 0xFFE0

bigdb for GNU Debugger, BDI3000 (ColdFire)

3.3 Debugging with GDB

Because the target agent runs within BDI, no debug support has to be linked to your application. There is also no need for any BDI specific changes in the application sources. Your application must be fully linked because no dynamic loading is supported.

3.3.1 Target setup

Target initialization may be done at two places. First with the BDI configuration file, second within the application. The setup in the configuration file must at least enable access to the target memory where the application will be loaded. Disable the watchdog and setting the CPU clock rate should also be done with the BDI configuration file. Application specific initializations like setting the timer rate are best located in the application startup sequence.

3.3.2 Connecting to the target

As soon as the target comes out of reset, BDI initializes it and loads your application code. If RUN is selected, the application is immediately started, otherwise only the target PC is set. BDI now waits for GDB request from the debugger running on the host.

After starting the debugger, it must be connected to the remote target. This can be done with the following command at the GDB prompt:

(gdb)target remote bdi3000:2001

bdi3000 This stands for an IP address. The HOST file must have an appropriate entry. You may also use an IP address in the form xxx.xxx.xxx.xxx

2001 This is the TCP port used to communicate with the BDI

If not already suspended, this stops the execution of application code and the target CPU changes to background debug mode.

Remember, every time the application is suspended, the target CPU is freezed. During this time no hardware interrupts will be processed.

Note: For convenience, the GDB detach command triggers a target reset sequence in the BDI. (gdb)...

(gdb)detach

... Wait until BDI has resetet the target and reloaded the image (gdb)target remote bdi3000:2001

biggs for GNU Debugger, BDI3000 (ColdFire)

3.3.3 Breakpoint Handling

GDB versions before V5.0:

GDB inserts breakpoints by replacing code via simple memory read / write commands. There is no command like "Set Breakpoint" defined in the GDB remote protocol. When breakpoint mode HARD is selected, the BDI checks the memory write commands for such hidden "Set Breakpoint" actions. If such a write is detected, the write is not performed and the BDI sets an appropriate hardware breakpoint. The BDI assumes that this is a "Set Breakpoint" action when memory write length is 2 bytes and the pattern to write is a trap instruction (0x4E4?).

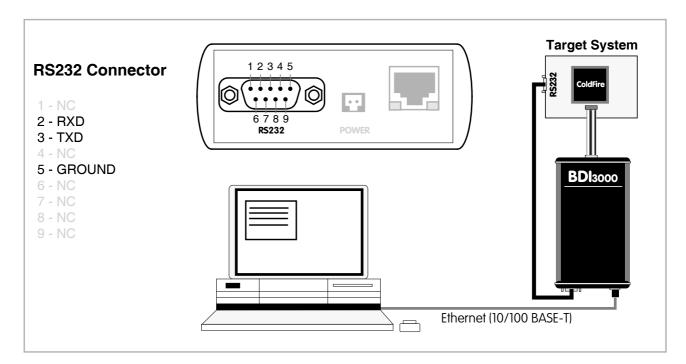
GDB version V5.x:

GDB version 5.x uses the Z-packet to set breakpoints (watchpoints). For software breakpoints, the BDI replaces code with a HALT instruction. When breakpoint mode HARD is selected, the BDI sets an appropriate hardware breakpoint.

User controlled hardware breakpoints:

The ColdFire has a special watchpoint / breakpoint hardware integrated. Normally the BDI controls this hardware in response to Telnet commands (BI, BDx) or when breakpoint mode HARD is selected. Via the Telnet commands BI and BDx, you cannot access all the features of the breakpoint hardware. Therefore the BDI assumes that the user will control / setup this breakpoint hardware as soon as TDR is written to with a value that is not zero. This way the debugger or the user via Telnet has full access to all features of this watchpoint / breakpoint hardware. Clearing TDR gives control back to the BDI.

3.3.4 GDB monitor command


The BDI supports the GDB V5.x "monitor" command. Telnet commands are executed and the Telnet output is returned to GDB.

(gdb) target remote bdi3000:2001 Remote debugging using bdi3000:2001 0x10b2 in start () (gdb) mon break Breakpoint mode is SOFT (gdb) mon break hard

(gdb) mon break Breakpoint mode is HARD (gdb)

3.3.5 Target serial I/O via BDI

A RS232 port of the target can be connected to the RS232 port of the BDI3000. This way it is possible to access the target's serial I/O via a TCP/IP channel. For example, you can connect a Telnet session to the appropriate BDI3000 port. Connecting GDB to a GDB server (stub) running on the target should also be possible.

The configuration parameter "SIO" is used to enable this serial I/O routing. The used framing parameters are 8 data, 1 stop and not parity.

[TARGET]

SIO 7 9600 ;Enable SIO via TCP port 7 at 9600 baud

Warning!!!

Once SIO is enabled, connecting with the setup tool to update the firmware will fail. In this case either disable SIO first or disconnect the BDI from the LAN while updating the firmware.

3.4 Telnet Interface

A Telnet server is integrated within the BDI. The Telnet channel is used by the BDI to output error messages and other information. Also some basic debug commands can be executed.

Telnet Debug features:

- Display and modify memory locations
- Display and modify general and special purpose registers
- Single step a code sequence
- Set hardware breakpoints (for code and data accesses)
- Load a code file from any host
- Start / Stop program execution
- Programming and Erasing Flash memory

During debugging with GDB, the Telnet is mainly used to reboot the target (generate a hardware reset and reload the application code). It may be also useful during the first installation of the bdiGDB system or in case of special debug needs (e.g. setting breakpoints on variable access).

Multiple commands separated by a semicolon can be entered on one line.

Following a list of the available Telnet commands:

"MD [<address>] [<count>] display target memory as word (32bit)", "MDH [<address>] [<count>] display target memory as half word (16bit)", "MDB [<address>] [<count>] display target memory as byte (8bit)", "DUMP <addr> <size> [<file>] dump target memory to a file", "MM <addr> <value> [<cnt>] modify word(s) (32bit) in target memory", "MMH <addr> <value> [<cnt>] modify half word(s) (16bit) in target memory", "MMB <addr> <value> [<cnt>] modify byte(s) (8bit) in target memory", "MT <addr> <count> memory test", "MC [<address>] [<count>] calculates a checksum over a memory range", "MV verifies the last calculated checksum". "RD [<name>] display CPU or user defined register", "RDFP display floating point registers", "RDUMP [<file>] dump all user defined register to a file", modify CPU or user defined register", "RM <name> <value> "TLB <from>[<to>] display TLB entry (only V4e cores)", write TLB entry (only V4e cores)", "WTLB <idx> <epn> <rpn> "RESET reset the target system", "BREAK [SOFT | HARD] display or set current breakpoint mode", "GO [<pc>] set PC and start target system", "TI [<pc>] single step an instruction", "HALT force target to enter debug mode", "BI <addr> set instruction hardware breakpoint", "CI [<id>] clear instruction hardware breakpoint(s)", "BD [R|W] < addr >set data watchpoint (32bit access)", "BDH [R|W] <addr> set data watchpoint (16bit access)", "BDB [R|W] < addr >set data watchpoint (8bit access)", "CD [<id>] clear data breakpoint(s)", "INFO display information about the current state", "LOAD [<offset>] [<file> [<format>]] load program file to target memory", "VERIFY [<offset>] [<file> [<format>]] verify a program file to target memory", "PROG [<offset>] [<file> [<format>]] program flash memory", <format> : SREC or BIN or AOUT or ELF", "ERASE [<address> [<mode>]] erase a flash memory sector, chip or block", <mode> : CHIP, BLOCK or SECTOR (default is sector)", "ERASE <addr> <step> <count> erase multiple flash sectors", "UNLOCK [<addr> [<delay>]] unlock a flash sector", "UNLOCK <addr> <step> <count> unlock multiple flash sectors", delay for a number of milliseconds", "DELAY <ms> "HOST <ip> change IP address of program file host", "PROMPT <string> defines a new prompt string", "CONFIG display or update BDI configuration", "CONFIG <file> [<hostIP> [<bdiIP> [<gateway> [<mask>]]]]", "HELP display command list", reboot the BDI and reload the configuration", "BOOT [loader] "QUIT terminate the Telnet session"

Note:

The Telnet command RESET does only reset the target system. The configuration file is not loaded again. If the configuration file has changed, use the Telnet command BOOT to reload it.

Note:

The DUMP command uses TFTP to write a binary image to a host file. Writing via TFTP on a Linux/ Unix system is only possible if the file already exists and has public write access. Use "man tftpd" to get more information about the TFTP server on your host.

4 Specifications				
Operating Voltage Limiting	5 VDC ± 0.25 V			
Power Supply Current	typ. 500 mA max. 1000 mA			
RS232 Interface: Baud Rates Data Bits Parity Bits Stop Bits	9'600,19'200, 38'400, 57'600,115'200 8 none 1			
Network Interface	10/100 BASE-T			
BDM/JTAG clock	up to 32 MHz			
Supported target voltage	1.2 – 5.0 V			
Operating Temperature	+ 5 °C +60 °C			
Storage Temperature	-20 °C +65 °C			
Relative Humidity (noncondensing)	<90 %rF			
Size	160 x 85 x 35 mm			
Weight (without cables)	280 g			
Host Cable length (RS232)	2.5 m			
Electromagnetic Compatibility	CE compliant			
Restriction of Hazardous Substances	RoHS 2002/95/EC compliant			

Specifications subject to change without notice

5 Environmental notice

Disposal of the equipment must be carried out at a designated disposal site.

6 Declaration of Conformity (CE)

7 Abatron Warranty and Support Terms

7.1 Hardware

ldi

ABATRON Switzerland warrants that the Hardware shall be free from defects in material and workmanship for a period of 3 years following the date of purchase when used under normal conditions. Failure in handling which leads to defects or any self-made repair attempts are not covered under this warranty. In the event of notification within the warranty period of defects in material or workmanship, ABATRON will repair or replace the defective hardware. The customer must contact the distributor or Abatron for a RMA number prior to returning.

7.2 Software

License

Against payment of a license fee the client receives a usage license for this software product, which is not exclusive and cannot be transferred.

Copies

The client is entitled to make copies according to the number of licenses purchased. Copies exceeding this number are allowed for storage purposes as a replacement for defective storage mediums.

Update and Support

The agreement includes free software maintenance (update and support) for one year from date of purchase. After this period the client may purchase software maintenance for an additional year.

7.3 Warranty and Disclaimer

ABATRON AND ITS SUPPLIERS HEREBY DISCLAIMS AND EXCLUDES, TO THE EXTENT PERMITTED BY APPLICABLE LAW, ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT.

7.4 Limitation of Liability

IN NO EVENT SHALL ABATRON OR ITS SUPPLIERS BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING, WITHOUT LIMITATION, ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THE HARDWARE AND/OR SOFTWARE, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, BUSINESS, DATA, GOODWILL, OR ANTICIPATED SAVINGS, EVEN IF ADVISED OF THE POSSIBILITY OF THOSE DAMAGES.

The hardware and software product with all its parts, copyrights and any other rights remain in possession of ABATRON. Any dispute, which may arise in connection with the present agreement shall be submitted to Swiss Law in the Court of Zug (Switzerland) to which both parties hereby assign competence.

Appendices

A Troubleshooting

Problem

The firmware can not be loaded.

Possible reasons

- The BDI is not correctly connected with the Host (see chapter 2).
- A wrong communication port is selected (Com 1...Com 4).
- The BDI is not powered up

Problem

No working with the target system (loading firmware is okay).

Possible reasons

- Wrong pin assignment (BDM/JTAG connector) of the target system (see chapter 2).
- Target system initialization is not correctly -> enter an appropriate target initialization list.
- An incorrect IP address was entered (BDI3000 configuration)
- BDM/JTAG signals from the target system are not correctly (short-circuit, break, ...).
- The target system is damaged.

Problem

Network processes do not function (loading the firmware was successful)

Possible reasons

- The BDI3000 is not connected or not correctly connected to the network (LAN cable or media converter)
- An incorrect IP address was entered (BDI3000 configuration)

B Maintenance

The BDI needs no special maintenance. Clean the housing with a mild detergent only. Solvents such as gasoline may damage it.

C Trademarks

All trademarks are property of their respective holders.